题目内容
(09年湖北八校联考理)(12分)
已知函数.
(Ⅰ)求函数的单调区间和极值;
(Ⅱ)若对满足
的任意实数
恒成立,求实数
的取值范围(这里
是自然对数的底数);
(Ⅲ)求证:对任意正数、
、
、
,恒有
.
解析:(Ⅰ)
∴的增区间为
,
减区间为
和
.
极大值为,极小值为
.…………4′
(Ⅱ)原不等式可化为由(Ⅰ)知,
时,
的最大值为
.
∴的最大值为
,由恒成立的意义知道
,从而
…8′
(Ⅲ)设
则.
∴当时,
,故
在
上是减函数,
又当、
、
、
是正实数时,
∴.
由的单调性有:
,
即.…………12′
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目