题目内容

(09年湖北八校联考理)(12分)如图,已知正三棱柱各棱长都为为棱上的动点。

(Ⅰ)试确定的值,使得

(Ⅱ)若,求二面角的大小;

(Ⅲ)在(Ⅱ)的条件下,求点到面的距离。

解析:【法一】(Ⅰ)当时,作上的射影. 连结.

平面,∴,∴的中点,又,∴也是的中点,

.  反之当时,取的中点,连接.

为正三角形,∴.   由于的中点时,

平面,∴平面,∴.……4′

(Ⅱ)当时,作上的射影. 则底面.

上的射影,连结,则.

为二面角的平面角。

又∵,∴,∴.

,又∵,∴.

,∴的大小为.…8′

(Ⅲ)设到面的距离为,则,∵,∴平面,

即为点到平面的距离,

,∴.

,解得.即到面的距离为.12′

【法二】以为原点,轴,过点与垂直的直线为轴,

轴,建立空间直角坐标系,如图所示,

,则.

(Ⅰ)由

,∴,即的中点,

也即时,.…………4′

(Ⅱ)当时,点的坐标是.  取.

.

是平面的一个法向量。

又平面的一个法向量为.

,∴二面角的大小是.……8′

(Ⅲ)设到面的距离为,则,∴到面的距离为.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网