题目内容
【题目】【2016高考江苏卷】现需要设计一个仓库,它由上下两部分组成,上部分的形状是正四棱锥,下部分的形状是正四棱柱(如图所示),并要求正四棱柱的高的四倍.
(1)若则仓库的容积是多少?
(2)若正四棱柱的侧棱长为6m,则当为多少时,仓库的容积最大?
【答案】(1)312(2)
【解析】
试题分析:(1)几何体体积为柱与锥体积之和,需明确柱与锥体积公式区别,分别代入对应公式求解(2)从题目问题出发,以为自变量建立体积的函数关系式,与(1)相似,先用分别表示底面正方形周长及柱的高,再利用柱与锥体积公式得,,最后利用导数求其最值
试题解析:解:(1)由PO1=2知OO1=4PO1=8.
因为A1B1=AB=6,
所以正四棱锥P-A1B1C1D1的体积
正四棱柱ABCD-A1B1C1D1的体积
所以仓库的容积V=V锥+V柱=24+288=312(m3).
(2)设A1B1=a(m),PO1=h(m),则0<h<6,OO1=4h.连结O1B1.
因为在中,
所以,即
于是仓库的容积,
从而.
令,得 或(舍).
当时, ,V是单调增函数;
当时,,V是单调减函数.
故时,V取得极大值,也是最大值.
因此,当 时,仓库的容积最大.
练习册系列答案
相关题目