题目内容
4.(文科)设f(x)=a(x-5)2+6lnx,其中a∈R,曲线y=f(x)在点(1,f(1))处的切线与y轴相交于点(0,6).(Ⅰ)确定a的值;
(Ⅱ)求函数f(x)的单调区间.
分析 (1)先由所给函数的表达式,求导数fˊ(x),再根据导数的几何意义求出切线的斜率,最后由曲线y=f(x)在点(1,f(1))处的切线与y轴相交于点(0,6)列出方程求a的值即可;
(2)由(1)求出的原函数及其导函数,求出导函数的零点,把函数的定义域分段,判断导函数在各段内的符号,从而得到函数的单调区间.
解答 解:(Ⅰ)因f(x)=a(x-5)2+6lnx,
故f′(x)=2a(x-5)+$\frac{6}{x}$,(x>0),
令x=1,得f(1)=16a,f′(1)=6-8a,
∴曲线y=f(x)在点(1,f(1))处的切线方程为y-16a=(6-8a)(x-1),
由切线与y轴相交于点(0,6).
∴6-16a=8a-6,
∴a=$\frac{1}{2}$.
(Ⅱ)由(I)得f(x)=$\frac{1}{2}$(x-5)2+6lnx,(x>0),
f′(x)=(x-5)+$\frac{6}{x}$=$\frac{(x-2)(x-3)}{x}$,
令f′(x)=0,得x=2或x=3,
当0<x<2或x>3时,f′(x)>0,故f(x)在(0,2),(3,+∞)上为增函数,
当2<x<3时,f′(x)<0,故f(x)在(2,3)上为减函数.
点评 本小题主要考查利用导数研究曲线上某点切线方程、利用导数研究函数的单调性及其几何意义等基础知识,考查运算求解能力,考查分类讨论思想、化归与转化思想.属于中档题.
练习册系列答案
相关题目
14.已知sin55°=m,则cos2015°=( )
A. | $\sqrt{1-{m^2}}$ | B. | -$\sqrt{1-{m^2}}$ | C. | m | D. | -m |
19.已知椭圆 $\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点为F(3,0),点(0,-3)在椭圆上,则椭圆的方程为( )
A. | $\frac{{x}^{2}}{45}$+$\frac{{y}^{2}}{{18}^{2}}$=1 | B. | $\frac{{x}^{2}}{36}$+$\frac{{y}^{2}}{27}$=1 | C. | $\frac{{x}^{2}}{27}$+$\frac{{y}^{2}}{18}$=1 | D. | $\frac{{x}^{2}}{18}$+$\frac{{y}^{2}}{9}$=1 |