题目内容
8.(1-x-3y)5的展开式中不含x的项的系数和为( )A. | 32 | B. | -32 | C. | 64 | D. | -64 |
分析 先将问题转化为二项展开式的各项系数和问题,再利用赋值法求出各项系数和.
解答 解:求(1-x-3y)5的展开式中不含x的项的系数和,
即5个多项式(1-x-3y)在展开时全不出x,
(1-x-3y)5的展开式中不含x的项的系数和等于(1-3y)5的各项系数和,
对于(1-3y)5令y=1得展开式的各项系数和为(-2)5=-32,
故选:B.
点评 本题主要考查二项式定理的应用,利用分步乘法将问题等价转化,利用赋值法求展开式的各项系数和,属于基础题.
练习册系列答案
相关题目
3.“${log_a}^x={log_a}^y$(a>0且a≠1)”是“x=y”的( )
A. | 充要条件 | B. | 充分不必要条件 | ||
C. | 必要不充分条件 | D. | 既不充分也不必要条件 |
19.已知f(x)=log2$\frac{x+1}{x-1}$(其中x>1),g(x)=x2-2ax+a2+b(其中x∈R,a>0,b>1),则下列判断正确的是( )
A. | f(g(a-1))>f(g(a)) | B. | f(g($\frac{2a}{3}$))>f(g($\frac{5a}{3}$)) | ||
C. | g(f($\frac{{4}^{n}+1}{{4}^{n}-1}$))>g(f(3))(其中a≠0且a$≠\frac{1}{2}$) | D. | g(f($\frac{{2}^{n}+1}{{2}^{n}-1}$))>g(f(3))(其中a≠0,且a≠1) |
16.2014 年12 月28 日开始,北京市公共电汽车和地铁按照里程分段计价.具体如下表.(不考虑公交卡折扣情况)
已知在北京地铁四号线上,任意一站到陶然亭站的票价不超过5 元,现从那些只乘坐四号线地铁,且在陶然亭出站的乘客中随机选出120 人,他们乘坐地铁的票价统计如图所示.
(Ⅰ)如果从那些只乘坐四号线地铁,且在陶然亭站出站的乘客中任选1 人,试估计此人乘坐地铁的票价小于5 元的概率;
(Ⅱ)从那些只乘坐四号线地铁,且在陶然亭站出站的乘客中随机选2 人,记x 为这2人乘坐地铁的票价和,根据统计图,并以频率作为概率,求X 的分布列和数学期望;
(Ⅲ)小李乘坐地铁从A 地到陶然亭的票价是5 元,返程时,小李乘坐某路公共电汽车所花交通费也是5 元,假设小李往返过程中乘坐地铁和公共电汽车的路程均为s 公里,试写出s 的取值范围.(只需写出结论)
乘公共汽车方案 | 10公里(含)内2元; 10公里以上部分,每增加1元可乘坐5公里(含) |
乘坐地铁方案(不含机场线) | 6公里(含)内3元 6公里至12公里(含)4元 12公里至22公里(含)5元 |
22公里至32公里(含)6元 32公里以上部分,每增加1元可乘坐20公里(含) |
(Ⅰ)如果从那些只乘坐四号线地铁,且在陶然亭站出站的乘客中任选1 人,试估计此人乘坐地铁的票价小于5 元的概率;
(Ⅱ)从那些只乘坐四号线地铁,且在陶然亭站出站的乘客中随机选2 人,记x 为这2人乘坐地铁的票价和,根据统计图,并以频率作为概率,求X 的分布列和数学期望;
(Ⅲ)小李乘坐地铁从A 地到陶然亭的票价是5 元,返程时,小李乘坐某路公共电汽车所花交通费也是5 元,假设小李往返过程中乘坐地铁和公共电汽车的路程均为s 公里,试写出s 的取值范围.(只需写出结论)
20.某电信公司从所在地的1000名使用4G手机用户中,随机抽取了20名,对其收集每日使用流量(单位:M)进行统计,得到如下数据:
(1)估计这20名4G手机用户每日使用流量(单位:M)的平均值;
(2)估计此地1000名使用4G手机用户中每日使用流量不少于10M用户数;
(3)在15≤x<20和20≤x<25两组用户中,随机抽取两人作进一步问卷调查,求所抽取的两人恰好来自不同组的概率.
流量x | 0≤x<5 | 5≤x<10 | 10≤x<15 | 15≤x<20 | 20≤x<25 | x≥25 |
人数 | 1 | 6 | 6 | 5 | 2 | 0 |
(2)估计此地1000名使用4G手机用户中每日使用流量不少于10M用户数;
(3)在15≤x<20和20≤x<25两组用户中,随机抽取两人作进一步问卷调查,求所抽取的两人恰好来自不同组的概率.