题目内容
设等差数列{an}的公差d不为0,a1=9d.若ak是a1与a2k的等比中项,则k=( )
A.2 | B.4 | C.6 | D.8 |
因为ak是a1与a2k的等比中项,
则ak2=a1a2k,[9d+(k-1)d]2=9d•[9d+(2k-1)d],
又d≠0,则k2-2k-8=0,k=4或k=-2(舍去).
故选B.
则ak2=a1a2k,[9d+(k-1)d]2=9d•[9d+(2k-1)d],
又d≠0,则k2-2k-8=0,k=4或k=-2(舍去).
故选B.

练习册系列答案
相关题目