题目内容
已知椭圆(a>b>0)的离心率e=,连接椭圆的四个顶点得到的菱形的面积为4.(Ⅰ)求椭圆的方程;(Ⅱ)设直线l与椭圆相交于不同的两点A、B,已知点A的坐标为(-,0).若,求直线l的倾斜角;
(Ⅰ) (Ⅱ)直线l的倾斜角为或.
解析试题分析:(Ⅰ)由e=,得.再由,解得a=2b.
由题意可知,即ab=2.
解方程组得a=2,b="1."
所以椭圆的方程为.
(Ⅱ)解:由(Ⅰ)可知点A的坐标是(-2,0).设点B的坐标为,直线l、的斜率为k.则直线l的方程为y=k(x+2).
于是A、B两点的坐标满足方程组消去y并整理,得
.
由,得.从而.
所以.
由,得.
整理得,即,解得k=.
所以直线l的倾斜角为或.
考点:直线与圆锥曲线的综合问题
点评:本小题主要考查椭圆的标准方程和几何性质、直线的方程、两点间的距离公式、直线的倾斜角、平面向量等基础知识,考查用代数方法研究圆锥曲线的性质及数形结合的思想,考查综合分析与运算能力.
练习册系列答案
相关题目