题目内容

19.如图,已知四棱锥 V-ABCD的底面是边长为2正方形,侧面都是侧棱长为$\sqrt{5}$的等腰三角形,则二面角V-AB-C的大小为(  )
A.30°B.45°C.60°D.90°

分析 因为侧面VAB为等腰三角形,故取AB的中的E有VE⊥AB,因为底面ABCD是边长为2的正方形,取CD的中点F,则EF⊥AB,所以∠VEF为二面角V-AB-C的平面角,再解△VEF即可.

解答 解:取AB、CD的中点E、F,连接VE、EF、VF,
∵VA=VB=$\sqrt{5}$,
∴△VAB为等腰三角形,
∴VE⊥AB,
又∵ABCD是正方形,则BC⊥AB,
∵EF∥BC,
∴EF⊥AB,
∵EF∩VE=E,
∴∠VEF为二面角V-AB-C的平面角,
∵△VAB≌△VDC,∴VE=VF=2,EF=BC=2,
∴△VEF为等边三角形,
∴∠VEF=60°,即二面角V-AB-C为60°.
故选:C.

点评 本题考查二面角的求法,对正棱锥的认识,考查识图能力和运算能力,考查空间想象能力以及计算能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网