题目内容
5.已知椭圆Γ:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的右焦点F2的坐标为(c,0),若b=c,且点(c,l)在椭圆Γ上.(I)求椭圆Γ的标准方程;
(Ⅱ)当k≠0时,若直线l1:y=k(x+$\sqrt{2}$),l2:y=-$\frac{1}{k}$(x+$\sqrt{2}$)与椭圆Γ的交点分别为A,B和C,D,记四边形ACBD的面积为S1.
①求S1关于k的表达式;
②若直线l3:$\sqrt{2}$kx-y+k=0,l4:$\sqrt{2}$x+ky+1=0与圆E:x2+y2=1的交点分别为M,N和P,Q,记四边形MNPQ的面积为S2,试判断$\frac{S_1}{S_2}$是否为定值?若是,求出该定值,若不是,请说明.
分析 (I)由b=c,椭圆Γ的标准方程可表示为$\frac{{x}^{2}}{2{c}^{2}}+\frac{{y}^{2}}{{c}^{2}}=1$,把点(c,l)代入椭圆方程解得c2=2,b2=2,a2=4,可得椭圆Γ的标准方程;
(II)①由直线方程可得l1⊥l2,设A(x1,y1),B(x2,y2).把y=k$(x+\sqrt{2})$与椭圆方程联立化为(1+2k2)x2+$4\sqrt{2}{k}^{2}$x+4k2-4=0,△>0,利用根与系数的关系可得|AB|=$\sqrt{(1+{k}^{2})[({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}]}$,用-$\frac{1}{k}$代替k,可得|CD|,可得S1=$\frac{1}{2}|AB||CD|$=$\frac{8(1+{k}^{2})^{2}}{(1+2{k}^{2})(2+{k}^{2})}$.
②设M(x3,y3),N(x4,y4),不妨设x3>x4,直线l3的方程与圆的方程联立化为$(2+{k}^{2}){x}^{2}+2\sqrt{2}x+1-{k}^{2}=0$,利用根与系数的关系可得|MN|=$\sqrt{(1+\frac{2}{{k}^{2}})[({x}_{3}+{x}_{4})^{2}-4{x}_{3}{x}_{4}]}$,同理可得|PQ|.设直线MN与PQ的夹角为θ,则tanθ=$\sqrt{2}k+\frac{\sqrt{2}}{k}$,sinθ=$\sqrt{1-co{s}^{2}θ}$.可得S2=$\frac{1}{2}|MN||PQ|sinθ$.可得$\frac{{S}_{1}}{{S}_{2}}$.
解答 解:(I)∵b=c,∴椭圆Γ的标准方程可表示为$\frac{{x}^{2}}{2{c}^{2}}+\frac{{y}^{2}}{{c}^{2}}=1$,
把点(c,l)代入椭圆方程可得:$\frac{{c}^{2}}{2{c}^{2}}+\frac{1}{{c}^{2}}=1$,解得c2=2,∴b2=2,a2=4,
∴椭圆Γ的标准方程为$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}$=1;
(II)①由直线方程可得l1⊥l2,设A(x1,y1),B(x2,y2).
联立$\left\{\begin{array}{l}{y=k(x+\sqrt{2})}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}=1}\end{array}\right.$,化为(1+2k2)x2+$4\sqrt{2}{k}^{2}$x+4k2-4=0,△>0,
∴x1+x2=$\frac{-4\sqrt{2}{k}^{2}}{1+2{k}^{2}}$,x1x2=$\frac{4{k}^{2}-4}{1+2{k}^{2}}$,
|AB|=$\sqrt{(1+{k}^{2})[({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}]}$=$\frac{4(1+{k}^{2})}{1+2{k}^{2}}$,用-$\frac{1}{k}$代替k,可得|CD|=$\frac{4({k}^{2}+1)}{{k}^{2}+2}$,
∴S1=$\frac{1}{2}|AB||CD|$=$\frac{8(1+{k}^{2})^{2}}{(1+2{k}^{2})(2+{k}^{2})}$.
②联立$\left\{\begin{array}{l}{\sqrt{2}kx-y+k=0}\\{\sqrt{2}x+ky+1=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=-\frac{\sqrt{2}}{2}}\\{y=0}\end{array}\right.$,设M(x3,y3),N(x4,y4),不妨设x3>x4,
联立$\left\{\begin{array}{l}{\sqrt{2}x+ky+1=0}\\{{x}^{2}+{y}^{2}=1}\end{array}\right.$,化为$(2+{k}^{2}){x}^{2}+2\sqrt{2}x+1-{k}^{2}=0$,
∴x3+x4═$\frac{-2\sqrt{2}}{2+{k}^{2}}$,x3x4=$\frac{1-{k}^{2}}{2+{k}^{2}}$,
∴|MN|=$\sqrt{(1+\frac{2}{{k}^{2}})[({x}_{3}+{x}_{4})^{2}-4{x}_{3}{x}_{4}]}$=2$\sqrt{\frac{{k}^{2}+1}{2+{k}^{2}}}$,同理可得|PQ|=$2\sqrt{\frac{{k}^{2}+1}{1+2{k}^{2}}}$.
设直线MN与PQ的夹角为θ,则tanθ=$\sqrt{2}k+\frac{\sqrt{2}}{k}$,
sinθ=$\sqrt{1-co{s}^{2}θ}$=$\sqrt{\frac{2{k}^{4}+4{k}^{2}+2}{2{k}^{4}+5{k}^{2}+2}}$.
∴S2=$\frac{1}{2}|MN||PQ|sinθ$=$\frac{1}{2}×2×\sqrt{\frac{{k}^{2}+1}{2+{k}^{2}}}$×$2\sqrt{\frac{{k}^{2}+1}{1+2{k}^{2}}}$×$\sqrt{\frac{2{k}^{4}+4{k}^{2}+2}{2{k}^{4}+5{k}^{2}+2}}$=2×$\frac{\sqrt{2}(1+{k}^{2})^{2}}{(1+2{k}^{2})({k}^{2}+2)}$.
∴$\frac{{S}_{1}}{{S}_{2}}$=2$\sqrt{2}$为定值.
点评 本题考查了椭圆的标准方程及其性质、直线与椭圆相交问题转化为方程联立、弦长公式、四边形的面积计算公式、三角函数基本关系式,考查了推理能力与计算能力,属于难题.
A. | (1,2) | B. | [1,2] | C. | [1,2) | D. | (1,2] |
A. | 2003×2004 | B. | 2004×2005 | C. | 20052 | D. | 2005×2006 |