题目内容

已知复数z1=2cosθ+i•sinθ,z2=1-i•(
3
cosθ),其中i是虚数单位,θ∈R.
(1)当cosθ=
3
3
时,求|z1•z2|;
(2)当θ为何值时,z1=z2
分析:(1)根据所给的复数的代数形式,写出复数的模长,把两个模长做乘法运算,整理化简,根据所给的角的余弦值得到正弦值,代入所得的模长代数式,得到结果.
(2)根据复数相等的充要条件,得到两个复数的实部和虚部分别相等,得到关于角θ的方程组,解方程组得到角的范围.
解答:解:(1)|z1•z2|=|z1||z2|=
4cos2θ +sin2θ
1+3cos2θ

∵cosθ=
3
3

cos2θ=
1
3
sin2θ=
2
3

∴|z1•z2|=2,
(2)∵z1=z2
∴2cosθ=1,-sinθ=
3
cosθ

θ=2kπ±
π
3
且θ=kπ-
π
3
,k∈z

θ=2kπ-
π
3
,k∈z
点评:本题考查复数求模长,考查复数相等的充要条件,考查三角函数的运算,考查解关于三角函数的方程,本题是一个综合题目.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网