题目内容
【题目】如图,已知四棱柱的底面是正方形,侧面是矩形,,为的中点,平面平面.
(1)证明:平面;
(2)判断二面角是否为直二面角,不用说明理由;
(3)求二面角的大小.
【答案】(1)见解析;(2)是;(3).
【解析】
(1)连接、、,平面即为平面,推导出,,,由此能证明平面;
(2)二面角是直二面角;
(3)以为原点,为轴,为轴,为轴,建立空间直角坐标系,利用空间向量法能求出二面角的大小.
(1)连接,,.
平面即为平面,底面是正方形,.
又平面平面,平面平面,平面,
平面,又平面,,
侧面是矩形,,
又,平面,平面,平面;
(2)二面角为直二面角;
(3)由(1)可知,,,,
故以为坐标原点,方向为轴正方向,为单位长度,建立如下图所示的空间直角坐标系,则,,,
所以,,设平面的法向量为,
则,令,则,,则,
由(1)知,平面,所以,是平面的一个法向量,
于是,
由(2)知二面角的平面角为钝角,所以二面角的大小为.
【题目】响应“文化强国建设”号召,某市把社区图书阅览室建设增列为重要的民生工程.为了解市民阅读需求,随机抽取市民200人做调查,统计显示,男士喜欢阅读古典文学的有64人,不喜欢的有56人;女士喜欢阅读古典文学的有36人,不喜欢的有44人.
(1)能否在犯错误的概率不超过0.25的前提下认为喜欢阅读古典文学与性别有关系?
(2)为引导市民积极参与阅读,有关部门牵头举办市读书交流会,从这200人中筛选出5名男代表和4名代表,其中有3名男代表和2名女代表喜欢古典文学.现从这9名代表中任选3名男代表和2名女代表参加交流会,记为参加交流会的5人中喜欢古典文学的人数,求的分布列及数学期望.
附:,其中.
参考数据:
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 |
【题目】目前有声书正受着越来越多人的喜爱.某有声书公司为了解用户使用情况,随机选取了名用户,统计出年龄分布和用户付费金额(金额为整数)情况如下图.
有声书公司将付费高于元的用户定义为“爱付费用户”,将年龄在岁及以下的用户定义为“年轻用户”.已知抽取的样本中有的“年轻用户”是“爱付费用户”.
(1)完成下面的列联表,并据此资料,能否有的把握认为用户“爱付费”与其为“年轻用户”有关?
爱付费用户 | 不爱付费用户 | 合计 | |
年轻用户 | |||
非年轻用户 | |||
合计 |
(2)若公司采用分层抽样方法从“爱付费用户”中随机选取人,再从这人中随机抽取人进行访谈,求抽取的人恰好都是“年轻用户”的概率.
.