题目内容
【题目】某学校研究性学习小组对该校高二学生视力情况进行调查,学习小组成员发现,学习成绩突出的学生,近视的比较多,为了研究学生的视力与学习成绩是否有关系,对年级名次在1~50名和951~1000名的学生进行了调查,得到如下数据:
年级名次 是否近视 | 1~50 | 951~1000 |
近视 | 41 | 32 |
不近视 | 9 | 18 |
(1)根据表中的数据,能否在犯错的概率不超过0.05的前提下认为视力与学习成绩有关系?
(2)在(1)中调查的100名学生中,按照分层抽样在不近视的学生中抽取了9人,进一步调查他们良好的护眼习惯,并且在这9人中任取3人,记名次在1~50名的学生人数为,求的分布列和数学期望.
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
附:
【答案】(1)在犯错误的概率不超过0.05的前提下认为视力与学习成绩有关系(2)见解析,数学期望1
【解析】
(1)题设数据代入即得解.
(2)服从超几何分布,利用概率公式可得解.
解:(1)
因此在犯错误的概率不超过0.05的前提下认为视力与学习成绩有关系
(2)根据题意9人中年级名次在名和名分别有3人和6人.
可取0,1,2,3
的分布列为
0 | 1 | 2 | 3 | ||
数学成绩 | |||||
物理成绩 |
(1)数据表明与之间有较强的线性关系,求于的线性回归方程;
(2)本次考试中,规定数学成绩达到分为优秀,物理成绩达到分为优秀.若该班数学优秀率与物理优秀率分别为和,且除去抽走的名同学外,剩下的同学中数学优秀但物理不优秀的同学共有人,请写出列联表,判断能否在犯错误的概率不超过的前提下认为数学优秀与物理优秀有关?
参考数据:,;,;