ÌâÄ¿ÄÚÈÝ
19£®ÒÑÖªÊýÁÐ{an}µÄÇ°nÏîΪºÍSn£¬ÇÒÓÐSn=$\frac{1}{2}$n2+$\frac{11}{2}$n£¬ÊýÁÐ{bn}Âú×ãbn+2-2bn+1+bn=0£¨n¡ÊN*£©£¬ÇÒb3=11£¬Ç°9ÏîºÍΪ153£®£¨1£©ÇóÊýÁÐ{an}¡¢{bn}µÄͨÏʽ£»
£¨2£©Éècn=$\frac{3}{£¨2{a}_{n}-11£©£¨2{b}_{n}-1£©}$£¬ÊýÁÐ{cn}µÄÇ°nÏîºÍΪTn£¬ÇóʹµÃ²»µÈʽTn£¾$\frac{k}{25}$¶ÔÒ»ÇÐn¡ÊN*¶¼³ÉÁ¢µÄ×î´óÕýÕûÊýkµÄÖµ£®
·ÖÎö £¨1£©Í¨¹ýan=Sn-Sn-1¿ÉµÃan=n+5£¬ÑéÖ¤µ±n=1ʱ³ÉÁ¢¼´¿É£»Í¨¹ýbn+2-2bn+1+bn=0£¨n¡ÊN*£©£¬¿ÉµÃÊýÁÐ{bn}ΪµÈ²îÊýÁУ¬ÉèÆ乫²îΪd£¬ÀûÓÃS9=9b5=9£¨b3+2d£©¼ÆËã¼´¿É£»
£¨2£©Í¨¹ýan=n+5¡¢bn=3n+2£¬·ÖÀë·Öĸ¿ÉµÃcn=$\frac{1}{2}$£¨$\frac{1}{2n-1}$-$\frac{1}{2n+1}$£©£¬²¢ÏîÏà¼Ó¿ÉµÃTn=$\frac{1}{2}$£¨1-$\frac{1}{2n+1}$£©£¬Ôò$\frac{1}{2}$£¨1-$\frac{1}{2n+1}$£©£¾$\frac{k}{25}$¶ÔÒ»ÇÐn¡ÊN*¶¼³ÉÁ¢£¬¼ÆËã¼´¿É£®
½â´ð ½â£º£¨1£©¡ßSn=$\frac{1}{2}$n2+$\frac{11}{2}$n£¬
¡àan=Sn-Sn-1=$\frac{1}{2}$n2+$\frac{11}{2}$n-$\frac{1}{2}$£¨n-1£©2-$\frac{11}{2}$£¨n-1£©=n+5£¬
ÓÖ¡ßa1=S1=$\frac{1}{2}+\frac{11}{2}$=6Âú×ãÒªÇó£¬
¡àÊýÁÐ{an}µÄͨÏîan=n+5£»
¡ßbn+2-2bn+1+bn=0£¨n¡ÊN*£©£¬
¡àÊýÁÐ{bn}ΪµÈ²îÊýÁУ¬ÉèÆ乫²îΪd£¬
ÓÖ¡ßb3=11£¬Ç°9ÏîºÍΪ153£¬
¡à153=9b5=9£¨b3+2d£©=9£¨11+2d£©£¬
¼´¹«²îd=3£¬
¡àb1=b3-2d=11-2¡Á3=5£¬
¡àÊýÁÐ{bn}µÄͨÏîbn=5+3£¨n-1£©=3n+2£»
£¨2£©¡ßan=n+5£¬bn=3n+2£¬
¡àcn=$\frac{3}{£¨2{a}_{n}-11£©£¨2{b}_{n}-1£©}$=$\frac{3}{£¨2n+10-11£©£¨6n+4-1£©}$=$\frac{1}{£¨2n-1£©£¨2n+1£©}$=$\frac{1}{2}$£¨$\frac{1}{2n-1}$-$\frac{1}{2n+1}$£©£¬
¡àTn=$\frac{1}{2}$£¨1-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{5}$+¡+$\frac{1}{2n-1}$-$\frac{1}{2n+1}$£©
=$\frac{1}{2}$£¨1-$\frac{1}{2n+1}$£©£¬
¡à²»µÈʽTn£¾$\frac{k}{25}$¶ÔÒ»ÇÐn¡ÊN*¶¼³ÉÁ¢µÈ¼ÛÓÚ$\frac{1}{2}$£¨1-$\frac{1}{2n+1}$£©£¾$\frac{k}{25}$¶ÔÒ»ÇÐn¡ÊN*¶¼³ÉÁ¢£¬
¡à$\frac{n}{2n+1}$$£¾\frac{k}{25}$£¬¼´k£¼$\frac{25n}{2n+1}$=$\frac{25}{2+\frac{1}{n}}$¡Ü$\frac{25}{3}$£¬
¡à×î´óÕýÕûÊýkµÄֵΪ8£®
µãÆÀ ±¾ÌâÊÇÒ»µÀÊýÁÐÓë²»µÈʽµÄ×ÛºÏÌ⣬¿¼²éÊýÁеÄͨÏî¼°ÇóºÍ£¬¿¼²éÔËËãÇó½âÄÜÁ¦£¬×¢Òâ½âÌâ·½·¨µÄ»ýÀÛ£¬ÊôÓÚÖеµÌ⣮
A£® | 0040 | B£® | 0795 | C£® | 0815 | D£® | 0420 |
A£® | $£¨x-1+\sqrt{3}i£©£¨x-1-\sqrt{3}i£©$ | B£® | $£¨\sqrt{2}x-\sqrt{2}+\sqrt{3}i£©£¨\sqrt{2}x-\sqrt{2}-\sqrt{3}i£©$ | C£® | 2£¨x-1+i£©£¨x-1-i£© | D£® | 2£¨x+1+i£©£¨x+1-i£© |