题目内容
【题目】足球是当今世界传播范围最广、参与人数最多的体育运动,具有广泛的社会影响,深受世界各国民众喜爱.
(1)为调查大学生喜欢足球是否与性别有关,随机选取50名大学生进行问卷调查,当问卷评分不低于80分则认为喜欢足球,当评分低于80分则认为不喜欢足球,这50名大学生问卷评分的结果用茎叶图表示如图:
请依据上述数据填写如下列联表:
喜欢足球 | 不喜欢足球 | 总计 | |
女生 | |||
男生 | |||
总计 |
请问是否有 的把握认为喜欢足球与性别有关?
参考公式及数据:,.
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
(2)已知某国“糖果盒”足球场每年平均上座率与该国成年男子国家足球队在国际足联的年度排名线性相关,数据如表,,,
年度排名 | 9 | 6 | 3 | ||
平均上座率 | 0.9 | 0.91 | 0.92 | 0.93 | 0.95 |
求变量与的线性回归方程,并预测排名为1时该球场的上座率.
参考公式及数据:,;.
【答案】(1)没有的把握认为喜欢足球与性别有关;(2),.
【解析】
(1)由题意直接填写联表即可;代入公式计算出后即可得解;
(2)转化条件得,,再计算出、,后代入公式即可得线性回归方程;令,即为预测值.
(1)由题意知,,,,,填写列联表如下;
喜欢足球 | 不喜欢足球 | 总计 | |
女生 | 8 | 12 | 20 |
男生 | 20 | 10 | 30 |
总计 | 28 | 22 | 100 |
计算,
所以没有的把握认为喜欢足球与性别有关;
(2)由题意知,,
若,则,
解得,不合题意,舍去;
若,则,
解得;
因此,,;
所以,
所以与的线性回归方程为,
计算时,,
即预测排名为1时该球场的上座率为.
【题目】某企业有甲、乙两套设备生产同一种产品,为了检测两套设备的生产质量情况,随机从两套设备生产的大量产品中各抽取了50件产品作为样本,检测一项质量指标值,若该项质量指标值落在内,则为合格品,否则为不合格品. 表1是甲套设备的样本的频数分布表,图1是乙套设备的样本的频率分布直方图.
表1:甲套设备的样本的频数分布表
质量指标值 | [95,100) | [100,105) | [105,110) | [110,115) | [115,120) | [120,125] |
频数 | 1 | 4 | 19 | 20 | 5 | 1 |
图1:乙套设备的样本的频率分布直方图
(1)填写下面列联表,并根据列联表判断是否有90%的把握认为该企业生产的这种产品的质量指标值与甲、乙两套设备的选择有关;
甲套设备 | 乙套设备 | 合计 | |||||||||||||
合格品 | |||||||||||||||
不合格品 | |||||||||||||||
合计 | ,求的期望. |
P(K2≥k0) | 0.15 | 0.10 | 0.050 | 0.025 | 0.010 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
.