题目内容
7.已知在数列{an}中,a1=4,an=a1+a2+…+an-1(n≥2),并设bn=$\frac{1}{2lo{g}_{2}{a}_{n}•lo{g}_{2}{a}_{n+1}}$.(1)求{an}、{bn}的通项公式;
(2)若Sn=b1+b2+…+bn,求使Sn<$\frac{m}{32}$对一切n∈N*恒成立的最小整数m的值.
分析 (1)由an=a1+a2+…+an-1(n≥2),得an=Sn-1(n≥2),取n=n+1得an+1=Sn,两式作差可得数列{an}从第二项起为公比是2的等比数列,从而可得${a}_{n}=\left\{\begin{array}{l}{4,n=1}\\{{2}^{n},n≥2}\end{array}\right.$,代入bn=$\frac{1}{2lo{g}_{2}{a}_{n}•lo{g}_{2}{a}_{n+1}}$,求得首项,并得到当n≥2时,bn=$\frac{1}{2lo{g}_{2}{2}^{n}•lo{g}_{2}{2}^{n+1}}=\frac{1}{2}(\frac{1}{n}-\frac{1}{n+1})$,则{bn}的通项公式可求;
(2)由S1<$\frac{m}{32}$,得m>4,可得m=5;当n≥2时,由Sn$<\frac{3}{8}$.由$\frac{3}{8}≤\frac{m}{32}$,得m≥12.综上可得使Sn<$\frac{m}{32}$对一切n∈N*恒成立的最小整数m的值为12.
解答 解:(1)由an=a1+a2+…+an-1(n≥2),即an=Sn-1(n≥2),
得an+1=Sn,两式作差得:an+1-an=an,即an+1=2an(n≥2),
∴$\frac{{a}_{n+1}}{{a}_{n}}=2$(n≥2),
又a1=4,∴a2=S1=a1=4,
则数列{an}从第二项起为公比是2的等比数列,
∴${a}_{n}=\left\{\begin{array}{l}{4,n=1}\\{{2}^{n},n≥2}\end{array}\right.$,
则b1=$\frac{1}{2lo{g}_{2}4•lo{g}_{2}4}=\frac{1}{8}$,
当n≥2时,bn=$\frac{1}{2lo{g}_{2}{a}_{n}•lo{g}_{2}{a}_{n+1}}$=$\frac{1}{2lo{g}_{2}{2}^{n}•lo{g}_{2}{2}^{n+1}}=\frac{1}{2}(\frac{1}{n}-\frac{1}{n+1})$.
∴${b}_{n}=\left\{\begin{array}{l}{\frac{1}{8},n=1}\\{\frac{1}{2}(\frac{1}{n}-\frac{1}{n+1}),n≥2}\end{array}\right.$;
(2)当n=1时,Sn=b1=$\frac{1}{8}$,由S1<$\frac{m}{32}$,得$\frac{1}{8}<\frac{m}{32}$,得m>4,∴m=5;
当n≥2时,Sn=b1+b2+…+bn=$\frac{1}{8}+\frac{1}{2}(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+…+\frac{1}{n}-\frac{1}{n+1})$
=$\frac{1}{8}+\frac{1}{2}(\frac{1}{2}-\frac{1}{n+1})=\frac{3}{8}-\frac{1}{2(n+1)}$$<\frac{3}{8}$.
由$\frac{3}{8}≤\frac{m}{32}$,得m≥12.
综上,使Sn<$\frac{m}{32}$对一切n∈N*恒成立的最小整数m的值为12.
点评 本题考查数列递推式,考查了等比关系的确定,训练了裂项相消法求数列的和,考查了数列的函数特性,是中档题.
A. | 求有关x的方程ax2+bx+c=0的根 | B. | 求函数f(x)=$\left\{\begin{array}{l}{{x}^{2},x≥0}\\{x,x<0}\end{array}\right.$的值. | ||
C. | 求1+4+7+10+13的值 | D. | 解不等式ax+b>0(a≠0) |