题目内容

【题目】已知△ABC中,∠A、∠B、∠C成等差数列,且 .求:
(1)求∠A,∠C的大小.
(2)求△ABC的面积.

【答案】
(1)解:∵∠A、∠B、∠C成等差数列,

∴2∠B=∠A+∠C,

又∵∠A+∠B+∠C=180°.

∴∠B=60°.

由正弦定理 得:

解得:sinA=

所以∠A=45°或∠A=135°,

因为135°+60°>180°,

所以∠A=135°应舍去,即∠A=45°.

所以∠C=180°﹣45°﹣60°=75°


(2)解:

=3+


【解析】(1)由等差数列的性质及三角形内角和定理可求∠B=60°,由正弦定理可求sinA,∠A,即可得解.(2)利用三角形面积公式即可得解.
【考点精析】利用正弦定理的定义对题目进行判断即可得到答案,需要熟知正弦定理:

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网