题目内容
4.下列命题正确的是( )①函数y=sin(2x-$\frac{π}{6}$)+1的一个对称中心是($\frac{π}{12}$,0);
②从装有2个红球和2个白球的袋内任取2个球,则事件“至少有1个红球”和事件“全是白球”是互斥而不对立的两个事件;
③将f(x)=sin(2x+$\frac{π}{4}$)的图象向右平移$\frac{π}{8}$个单位长度,即得到函数y=sin2x的图象;
④若函数y=(k2+4k-5)x2+4(1-k)x+3的图象都在x轴上方,则实数k的取值范围是[1,19)
A. | ①③ | B. | ①④ | C. | ②④ | D. | ③④ |
分析 利用函数的对称中心判断①的正误;互斥事件与对立事件判断②的正误;三角函数的图象的平移变换判断③的正误;利用判别式求解K的范围判断④的正误;
解答 解:对于①,函数y=sin(2x-$\frac{π}{6}$)+1的一个对称中心是($\frac{π}{12}$,0);不正确;一个对称中心应该为:($\frac{π}{12}$,1);
对于②,从装有2个红球和2个白球的袋内任取2个球,则事件“至少有1个红球”和事件“全是白球”是互斥而不对立的两个事件;
“至少有1个红球”发生时,“恰有2个白球”不会发生,即事件A与事件B为互斥事件,至少有1个红球包含一个红球一个白球和两个红球,与恰有2个白球是对立事件;故②不正确.
对于③,将f(x)=sin(2x+$\frac{π}{4}$)的图象向右平移$\frac{π}{8}$个单位长度,即得到函数y=sin(2x-$\frac{π}{4}$+$\frac{π}{4}$)=sin2x的图象;所以③正确;
④若函数y=(k2+4k-5)x2+4(1-k)x+3的图象都在x轴上方,可得16(1-k)2-4(k2+4k-5)×3≤0并且k2+4k-5>0,解得k∈[1,19),实数k的取值范围是[1,19),所以④正确;
故选:D.
点评 本题考查命题的真假的判断,考查互斥事件与对立事件,三角函数的图象的平移,函数的对称性以及二次函数的性质的应用,是中档题.
练习册系列答案
相关题目
14.在△ABC中,若a=$\sqrt{6},b=2,B={60°}$,则此三角形( )
A. | 无解 | B. | 有一解 | ||
C. | 有两解 | D. | 解的个数无法确定 |
15.下列不等式中恒成立的是( )
A. | $2-x-\frac{4}{x}$≤-2 | B. | $sinx+\frac{1}{sinx}$≥2 | C. | $\frac{{{x^2}+5}}{{\sqrt{{x^2}+4}}}$≥2 | D. | $\frac{{{x^2}+2}}{{\sqrt{{x^2}+2}}}$≥$\sqrt{2}$ |
19.某地区2009年至2013年农村居民家庭人均纯收入y(单位:千元)的数据如下表:
(1)用最小二乘法求y关于x的线性回归方程;
(2)利用(1)中的回归方程,分析2009年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.
年份 | 2009 | 2010 | 2011 | 2012 | 2013 |
年份代号x | 1 | 2 | 3 | 4 | 5 |
人均纯收入y | 2.8 | 3.2 | 4.2 | 4.8 | 5 |
(2)利用(1)中的回归方程,分析2009年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.
9.生物兴趣小组的同学到野外调查某种植物的生长情况,共测量了k∈Z株该植物的高度(单位:厘米),获得数据如下:
6,7,8,9,10,14,16,17,17,18,19,20,20,21,24,26,26,27,28,29,29,30,30,30,31,31,33,36,37,41.
根据上述数据得到样本的频率分布表如下:
(1)确定样本频率分布表中n1,n2,f1和f2的值;
(2)根据上述频率分布表,画出样本频率分布直方图;
(3)用(2)的频率分布直方图估计该植物生长高度的平均值.
6,7,8,9,10,14,16,17,17,18,19,20,20,21,24,26,26,27,28,29,29,30,30,30,31,31,33,36,37,41.
根据上述数据得到样本的频率分布表如下:
分组 | 频数 | 频率 |
[5,15] | 6 | 0.2 |
(15,25] | 9 | 0.3 |
(25,35] | n1 | f1 |
(35,45] | n2 | f2 |
(2)根据上述频率分布表,画出样本频率分布直方图;
(3)用(2)的频率分布直方图估计该植物生长高度的平均值.
13.函数y=x3+4x的递增区间是( )
A. | (0,+∞) | B. | (-∞,-2) | C. | (2,+∞) | D. | (-∞,+∞) |