题目内容
【题目】已知椭圆的离心率为,点在椭圆上.
(1)求椭圆的方程;
(2)若不过原点的直线与椭圆相交于两点,与直线相交于点,且是线段的中点,求面积的最大值.
【答案】(1)椭圆的方程为;(2)面积的最大值为:.
【解析】试题分析:(1)将坐标代入椭圆方程,与离心率联立方程组解得(2)先根据点差法求AB斜率,再设AB点斜式方程,与椭圆方程联立方程组,利用韦达定理以及弦长公式求弦长AB,根据点到直线距离公式得三角形的高,代入三角形面积公式,最后根据基本不等式求最值.
试题解析:(1) 由椭圆C:的离心率为,点在椭圆上得解得所以椭圆的方程为.
(2)易得直线的方程为.
当直线的斜率不存在时,的中点不在直线上,故直线的斜率存在.
设直线的方程为,与联立消得
,
所以.
设,则,.
由,所以的中点,
因为在直线上,所以,解得
所以,得,且,
又原点到直线的距离,
所以,
当且仅当时等号成立,符合,且.
所以面积的最大值为:.
【题目】某企业有,两个分厂生产某种产品,规定该产品的某项质量指标值不低于130的为优质品.分别从,两厂中各随机抽取100件产品统计其质量指标值,得到如图频率分布直方图:
(1)根据频率分布直方图,分别求出分厂的质量指标值的众数和中位数的估计值;
(2)填写列联表,并根据列联表判断是否有的把握认为这两个分厂的产品质量有差异?
优质品 | 非优质品 | 合计 | |
合计 |
(3)(i)从分厂所抽取的100件产品中,利用分层抽样的方法抽取10件产品,再从这10件产品中随机抽取2件,已知抽到一件产品是优质品的条件下,求抽取的两件产品都是优质品的概率;
(ii)将频率视为概率,从分厂中随机抽取10件该产品,记抽到优质品的件数为,求的数学期望.
附:
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |