题目内容

【题目】已知f(x)是定义在R上的函数,满足f(x)=﹣f(﹣x),且当x<0时,f(x)=x ,则f(9)=

【答案】18
【解析】解:f(x)是定义在R上的函数,满足f(x)=﹣f(﹣x),函数是奇函数,
当x<0时,f(x)=x ,则f(9)=﹣f(﹣9)=﹣(﹣9)× =18.
所以答案是:18;
【考点精析】掌握函数奇偶性的性质和函数的值是解答本题的根本,需要知道在公共定义域内,偶函数的加减乘除仍为偶函数;奇函数的加减仍为奇函数;奇数个奇函数的乘除认为奇函数;偶数个奇函数的乘除为偶函数;一奇一偶的乘积是奇函数;复合函数的奇偶性:一个为偶就为偶,两个为奇才为奇;函数值的求法:①配方法(二次或四次);②“判别式法”;③反函数法;④换元法;⑤不等式法;⑥函数的单调性法.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网