题目内容
【题目】已知函数,记的解集为.
(1)求集合(用区间表示);
(2)当时,求函数的最小值;
(3)若函数在区间上为增函数,求的取值范围.
【答案】(1);(2)2;(3).
【解析】
(1)利用分段函数解析式,求得不等式的解集.
(2)利用对数运算化简函数,结合二次函数的性质求得函数的最小值.
(3)根据复合函数单调性同增异减,结合二次函数的性质列不等式组,解不等式组求得的取值范围.
(1)当时,由得,即,故.当时,由得,即,故.综上所述,集合.
(2)由(1)得,即函数的定义域为.,由于,所以,结合二次函数的性质可知,当时,取得最小值为.
(3)依题意函数在区间上为增函数,根据复合函数单调性同增异减,以及二次函数的开口向上,对称轴可知,解得.
练习册系列答案
相关题目