题目内容
(本题满分15分)
(1)已知是一次函数,且,,求的解析式;
(2)已知是二次函数,且,求的解析式.
(1)
(2)
【解析】略
((本题满分15分)某有奖销售将商品的售价提高120元后允许顾客有3次抽奖的机会,每次抽奖的方法是在已经设置并打开了程序的电脑上按“Enter”键,电脑将随机产生一个 1~6的整数数作为号码,若该号码是3的倍数则顾客获奖,每次中奖的奖金为100元,运用所学的知识说明这样的活动对商家是否有利。
(本题满分15分)设函数.
(Ⅰ)若函数在上单调递增,在上单调递减,求实数的最大值;
(Ⅱ)若对任意的,都成立,求实数的取值范围.
注:为自然对数的底数.
(本题满分15分)已知直线与曲线相切
1)求b的值;
2)若方程在上恰有两个不等的实数根,求
①m的取值范围;
②比较的大小
(本题满分15分)已知抛物线:(),焦点为,直线交抛物线于、两点,是线段的中点,
过作轴的垂线交抛物线于点,
(1)若抛物线上有一点到焦点的距离为,求此时的值;
(2)是否存在实数,使是以为直角顶点的直角三角形?若存在,求出的值;若不存在,说明理由。
已知函数
(1)求的单调区间;
(2)设,若在上不单调且仅在处取得最大值,求的取值范围.