题目内容

【题目】四棱锥,底面是边长为的菱形,侧面底面,, , 中点,在侧棱.

求证: ;

中点,求二面角的余弦值;

是否存在,使平面?若存在,求出的值;若不存在,说明理由.

【答案】Ⅰ)见解析;..

【解析】试题分析:)证明AD平面POB,即可证明ADPB;()证明PO底面ABCD,建立空间直角坐标系,求出平面DEQ的法向量,平面DQC的法向量,利用向量的夹角公式,即可求得结论;()求出平面DEQ法向量利用PA平面DEQ,即,从而可得结论.

解析:

Ⅰ)取中点,连接.

因为,所以.

因为菱形, ,所以.

所以.

因为,平面,所以平面.

所以.

Ⅱ)由(Ⅰ)可知, ,

因为侧面底面,且平面底面,所以底面.

为坐标原点,如图建立空间直角坐标系.

,因为中点,所以.

所以,所以平面的法向量为.

因为,设平面的法向量为,

,.

,,.

所以.

由图可知,二面角为锐角,所以余弦值为.

Ⅲ)设

Ⅱ)可知.

,,

又因为,所以,.

所以在平面, ,

所以平面的法向量为,

又因为平面,所以,

,解得.

所以当, 平面.

练习册系列答案
相关题目

【题目】已知函数

(Ⅰ)当时,求函数的单调递减区间;

(Ⅱ)若时,关于的不等式恒成立,求实数的取值范围;

(Ⅲ)若数列满足 ,记的前项和为,求证: .

【答案】I;(II;(III证明见解析.

【解析】试题分析:(Ⅰ)求出,在定义域内,分别令求得的范围,可得函数增区间, 求得的范围,可得函数的减区间;(Ⅱ)当时,因为,所以显然不成立,先证明因此时, 上恒成立,再证明当时不满足题意,从而可得结果;(III)先求出等差数列的前项和为,结合(II)可得,各式相加即可得结论.

试题解析:)由,得.所以

,解得(舍去),所以函数的单调递减区间为 .

)由得,

时,因为,所以显然不成立,因此.

,则,令,得.

时, ,所以,即有.

因此时, 上恒成立.

时, 上为减函数,在上为增函数,

,不满足题意.

综上,不等式上恒成立时,实数的取值范围是.

III)证明:由知数列的等差数列,所以

所以

由()得, 上恒成立.

所以. 将以上各式左右两边分别相加,得

.因为

所以

所以.

型】解答
束】
22

【题目】已知直线, (为参数, 为倾斜角).以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,曲线的直角坐标方程为.

(Ⅰ)将曲线的直角坐标方程化为极坐标方程;

(Ⅱ)设点的直角坐标为,直线与曲线的交点为,求的取值范围.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网