题目内容
【题目】四棱锥中,底面是边长为的菱形,侧面底面,, , 是中点,点在侧棱上.
(Ⅰ)求证: ;
(Ⅱ)若是中点,求二面角的余弦值;
(Ⅲ)是否存在,使平面?若存在,求出的值;若不存在,说明理由.
【答案】(Ⅰ)见解析;(Ⅱ).(Ⅲ).
【解析】试题分析:(Ⅰ)证明AD⊥平面POB,即可证明AD⊥PB;(Ⅱ)证明PO⊥底面ABCD,建立空间直角坐标系,求出平面DEQ的法向量,平面DQC的法向量,利用向量的夹角公式,即可求得结论;(Ⅲ)求出平面DEQ法向量,利用PA∥平面DEQ,即,从而可得结论.
解析:
(Ⅰ)取中点,连接.
因为,所以.
因为菱形中, ,所以.
所以.
因为,且平面,所以平面.
所以.
(Ⅱ)由(Ⅰ)可知, ,
因为侧面底面,且平面底面,所以底面.
以为坐标原点,如图建立空间直角坐标系.
则,因为为中点,所以.
所以,所以平面的法向量为.
因为,设平面的法向量为,
则,即.
令,则,即.
所以.
由图可知,二面角为锐角,所以余弦值为.
(Ⅲ)设
由(Ⅱ)可知.
设,则,
又因为,所以,即.
所以在平面中, ,
所以平面的法向量为,
又因为平面,所以,
即,解得.
所以当时, 平面.
练习册系列答案
相关题目