题目内容
15.某公司为了对一种新产品进行合理定价,将该产品按亊先拟定的价格进行试销,得到如下数据:单价x(元) | 4 | 5 | 6 | 7 | 8 | 9 |
销量V(件) | 90 | 84 | 83 | 80 | 75 | 68 |
( )
A. | $\frac{1}{6}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{2}{3}$ |
分析 根据已知中数据点坐标,我们易求出这些数据的数据中心点坐标,进而求出回归直线方程,判断各个数据点与回归直线的位置关系后,求出所有基本事件的个数及满足条件在回归直线右上方的基本事件个数,代入古典概率公式,即可得到答案.
解答 解:$\overline{x}$=$\frac{1}{6}$(4+5+6+7+8+9)=$\frac{13}{2}$,$\overline{y}$=$\frac{1}{6}$(90+84+83+80+75+68)=80
∵$\widehat{y}$=-4x+a,
∴a=106,
∴回归直线方程$\widehat{y}$=-4x+106;
数据(4,90),(5,84),(6,83),(7,80),(8,75),(9,68).
6个点中有3个点在直线右上方,即(6,83),(7,80),(8,75).
其这些样本点中任取1点,共有6种不同的取法,
故这点恰好在回归直线右上方的概率P=$\frac{3}{6}$=$\frac{1}{2}$.
故选:C.
点评 本题考查的知识是等可能性事件的概率及线性回归方程,求出回归直线方程,判断各数据点与回归直线的位置关系,并求出基本事件的总数和满足某个事件的基本事件个数是解答本题的关键
练习册系列答案
相关题目
5.在等差数列{an}中,a1+a3=10,a4+a6=4,则公差d的值为( )
A. | 1 | B. | 2 | C. | -2 | D. | -1 |
6.某几何体的三视图如图所示,正视图是面积为$\frac{9}{2}$π的半圆,俯视图是正三角形,此几何体的体积为( )
A. | $\frac{9\sqrt{3}}{2}$π | B. | 9$\sqrt{3}$π | C. | $\frac{9\sqrt{3}}{4}$π | D. | 3$\sqrt{3}$π |
3.对于使f(x)≤M成立的所有常数M中,我们把M的最小值叫作f(x)的上确界,若a,b∈(0,+∞),且a+b=2,则-$\frac{1}{3a}$-$\frac{3}{b}$的上确界为( )
A. | -$\frac{8}{3}$ | B. | $\frac{8}{3}$ | C. | -$\frac{4}{3}$ | D. | $\frac{4}{3}$ |