题目内容

如图,已知直角梯形ACDE所在的平面垂直于平面ABC,∠BAC=∠ACD=90°∠EAC=60°,AB=AC=AE=2.
(Ⅰ)在直线BC上是否存在一点P,使得DP∥平面EAB?请证明你的结论;
(Ⅱ)求平面EBD与平面ABC所成的锐二面角θ的余弦值;
(Ⅲ)求三棱锥C-BDE的体积.
分析:(Ⅰ)由题意及图形取AB的中点F,AC的中点M,得到四边形EMCD为矩形,利用线面平行的判定定理证得线面平行;
(Ⅱ)由题意利用二面角的定义得到二面角的平面角,然后在三角形中解出即可;
(Ⅲ)三棱锥C-BDE的体积三棱锥B-CDE的体积,由此可得结论.
解答:解:(Ⅰ)线段BC的中点就是满足条件的点P.证明如下:
取AB的中点F连接DP、PF、EF,则FP∥AC,FP=
1
2
AC,
取AC的中点M,连接EM、EC,
∵AE=AC且∠EAC=60°,∴△EAC是正三角形,∴EM⊥AC.
∴四边形EMCD为矩形,∴ED=MC=
1
2
AC.
又∵ED∥AC,∴ED∥FP且ED=FP,
∴四边形EFPD是平行四边形,∴DP∥EF,
∵EF?平面EAB,DP?平面EAB,
∴DP∥平面EAB;
(Ⅱ)过B作AC的平行线l,过C作l的垂线交l于G,连接DG,
∵ED∥AC,∴ED∥l,l是平面EBD与平面ABC所成二面角的棱.
∵平面EAC⊥平面ABC,DC⊥AC,∴DC⊥平面ABC,
又∵l?平面ABC,∴l⊥平面DGC,∴l⊥DG,
∴∠DGC是所求二面角的平面角.
设AB=AC=AE=2a,则CD=
3
a,GC=2a,
∴GD=
GC2+CD2
=
7
a,
∴cosθ=cos∠DGC=
GC
GD
=
2
7
7

(Ⅲ)由(Ⅰ)知,ED=1,DC=
3
,∴S△CDE=
1
2
×1×
3
=
3
2

∵直角梯形ACDE所在的平面垂直于平面ABC,∠BAC=90°
∴AB⊥平面ACDE
∴三棱锥C-BDE的体积等于三棱锥B-CDE的体积等于
1
3
×
3
2
×2
=
3
3
点评:本题主要考查直线与平面之间的平行、垂直等位置关系,二面角的概念、求法等知识,考查三棱锥体积的计算,考查空间想象能力和逻辑推理能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网