题目内容

如图,已知直角梯形ABCD的上底BC=
2
,BC∥AD,BC=
1
2
AD
CD⊥AD,PDC⊥,平面平面ABCD,△PCD是边长为2的等边三角形.
(1)证明:AB⊥PB;
(2)求二面角P-AB-D的大小.
(3)求三棱锥A-PBD的体积.
分析:(1)由已知中中在直角梯形ABCD中,因为AD=2
2
,BC=
2
,CD=2,我们易求出AB值,双由为BC⊥CD,平面PDC⊥平面ABCD,平面PDC∩平面ABCD=CD,则BC⊥平面PDC,再由勾定理得到,我们可得AB⊥PB;
(2)设线段DC的中点为E,连接PE,EB,结合△PCD是等边三角形,平面PDC⊥平面ABCD,平面PDC∩平面ABCD=CD,我们易得AB⊥PE,AB⊥PB,则∠PBE就是二面角P-AB-D的平面角,解△PBE即可得到答案.
(3)VA-PBD=VP-ABD,求出棱锥的底面面积及高,代入棱锥体积公式即可得到答案.
解答:证明:(1)在直角梯形ABCD中,因为AD=2
2
,BC=
2
,CD=2
所以AB=
(AD-BC)2+CD2
=
6

因为BC⊥CD,平面PDC⊥平面ABCD,平面PDC∩平面ABCD=CD,所以BC⊥平面PDC,因此在Rt△BCP中,PB=
BC2+PC2
=
6

因为BC∥AD所以AD⊥平面PDC,所以在Rt△PAD中,
PA=
AD2+PD2
=
(2
2
)2+22
=
12

所以在△PAB中,PA2=AB2+PB2,所以AB⊥PB.
解:(2)设线段DC的中点为E,连接PE,EB
因为△PCD是等边三角形,所以PE⊥C,
因为平面PDC⊥平面ABCD,平面PDC∩平面ABCD=CD,所以PE⊥平面ABCD,因此AB⊥PE,由(1)知AB⊥PB,所以AB⊥平面PEB,所以AB⊥BE,因此∠PBE就是二面角P-AB-D的平面角,在Rt△PBE中,
sin∠PBE=
PE
PB
=
3
6
=
2
2
,所以∠PBE=
π
4

解:(3)∵VA-PBD=VP-ABD=
1
3
S△ABD•PE
=
1
3
×
1
2
•AD•DC•
3
=
1
3
×
1
2
×2
2
×2×
3
=
2
6
3
点评:本题考查的知识点是直线与平面垂直的性质,棱锥的体积,二面角平面角的求法,在求二面角时,根据三垂线定理找到二面角的平面角是解答的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网