题目内容
已知函数f(x)是定义在R上的奇函数,当x<0时,f(x)=ex(x+1),给出下列命题:
①当x>0时,f(x)=ex(1-x);②函数f(x)有两个零点;③f(x)>0的解集为(-1,0)∪(1,+∞);④?x1,x2∈R,都有|f(x1)-f(x2)|<2.
其中正确命题的个数是( )
A.1 B.2
C.3 D.4
B
【解析】根据函数y=f(x)是奇函数,当x<0时,f(x)=ex(x+1),可知x>0时的解析式为f(x)=-e-x(-x+1),①不正确;函数有三个零点,②不正确;命题③④成立.选B.
练习册系列答案
相关题目
已知集合A、B,定义集合A与B的一种运算A⊕B,其结果如下表所示:
A | {1,2,3,4} | {-1,1} | {-4,8} | {-1,0,1} |
B | {2,3,6} | {-1,1} | {-4,-2,0,2} | {-2,-1,0,1} |
A⊕B | {1,4,6} | ∅ | {-2,0,2,8} | {-2} |
按照上述定义,若M={-2 011,0,2 012},N={-2 012,0,2 013},则M⊕N=________.