题目内容
设向量a=(2,sinθ),b=(1,cosθ),θ为锐角(1)若a·b=,求sinθ+cosθ的值;(2)若a//b,求sin(2θ+)的值.
(1) (2)
解析试题分析:(1)由已知及向量数量积的坐标运算可求得的值,从而应用平方关系就可求得(sinθ+cosθ)2的值,再注意到θ为锐角,知sinθ+cosθ>0,开方即得所求式子的值;(2)由向量平行的坐标条件:可得的值,法一:由(万能公式)得到的值,同理可得的值;再利用正弦和角公式将sin(2θ+)展开即可求得其值;法二:也可由的值,应用三角函数的定义求得的值,进而用倍角公式可求得和的值,下同法一.
试题解析:(1) 因为a·b=2+sinθcosθ=,所以sinθcosθ=.
所以 (sinθ+cosθ)2=1+2 sinθcosθ=.
又因为θ为锐角,所以sinθ+cosθ=.
(2) 解法一 因为a∥b,所以tanθ=2.
所以 sin2θ=2 sinθcosθ===,
cos2θ=cos2θ-sin2θ===-.
所以sin(2θ+)=sin2θ+cos2θ=×+×(-)=.
解法二 因为a∥b,所以tanθ=2.所以 sinθ=,cosθ=.
因此 sin2θ=2 sinθcosθ=, cos2θ=cos2θ-sin2θ=-.
所以sin(2θ+)=sin2θ+cos2θ=×+×(-)=.
考点:1.向量的数量积;2.向量平行;3.三角公式.
练习册系列答案
相关题目