题目内容
已知向量a=(2cosx,2sinx),b=(
cosx,cosx),设函数f(x)=a•b-
,求:
(1)f(x)的最小正周期和单调递增区间;
(2)若
, 且α∈(
,π). 求α.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024719673344.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024719673344.png)
(1)f(x)的最小正周期和单调递增区间;
(2)若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240247197041216.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024719720421.png)
(1)
,函数
的单调递增区间为
;
(2)
或
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024719751627.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024719767463.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240247197821093.png)
(2)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024719798630.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024719813496.png)
试题分析:(1)利用向量数量积的坐标运算求出
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024719829508.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240247197041216.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024719860962.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024719876704.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024719891852.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024719860962.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024719923285.png)
试题解析:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024719938837.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024719954981.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024719969768.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024719985831.png)
(1)函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024719767463.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024719751627.png)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240247200321041.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024720047909.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024720063445.png)
∴函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024719767463.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240247197821093.png)
(2)∵
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240247201251240.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024720141825.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240247201571034.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024719860962.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024720203709.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024719891852.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024720235656.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024720250491.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024719798630.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024719813496.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目
题目内容