题目内容
【题目】如图,在四棱锥中,平面平面ABCD,底面ABCD是直角梯形,,,,O是AD的中点.
(1)在线段PA上找一点E,使得平面PCD,并证明;
(2)在(1)的条件下,若,求平面OBE与平面POC所成的锐二面角的余弦值.
【答案】(1)E是线段PA的中点,证明详见解析;(2).
【解析】
(1)是线段的中点;连接,,,证明平面平面后即可得证;
(2)建立空间直角坐标系,表示出、、、、的坐标后,分别求出平面的一个法向量与平面的一个法向量,利用即可得解.
(1)是线段的中点,
证明:连接,,,
是的中点,,
又平面,平面,
平面,
又底面是直角梯形,,,
又平面,平面,
平面,
平面,平面,,
平面平面,
又平面,
平面.
(2)平面平面,,
,平面,且,,
以为原点,如图建立空间直角坐标系,
得,,,,,
得,,
设是平面的一个法向量,
则,得,取,
得,
又易知是平面的一个法向量,
设平面与平面所成的锐二面角为,
则,
即平面与平面所成的锐二面角的余弦值为.
【题目】某销售公司在当地、两家超市各有一个销售点,每日从同一家食品厂一次性购进一种食品,每件200元,统一零售价每件300元,两家超市之间调配食品不计费用,若进货不足食品厂以每件250元补货,若销售有剩余食品厂以每件150回收.现需决策每日购进食品数量,为此搜集并整理了、两家超市往年同期各50天的该食品销售记录,得到如下数据:
销售件数 | 8 | 9 | 10 | 11 |
频数 | 20 | 40 | 20 | 20 |
以这些数据的频数代替两家超市的食品销售件数的概率,记表示这两家超市每日共销售食品件数,表示销售公司每日共需购进食品的件数.
(1)求的分布列;
(2)以销售食品利润的期望为决策依据,在与之中选其一,应选哪个?
【题目】某公司欲对员工饮食习惯进行一次调查,从某科室的100人中的饮食结构调查结果统计如下表.
主食蔬菜 | 主食肉类 | 总计 | |
不超过45岁 | 15 | 40 | |
45岁以上 | 20 | ||
总计 |
(1)完成列联表,并判断能否有99%的把握认为员工的饮食习惯与年龄有关?
(2)在45岁以上员工中按照饮食习惯进行分层抽样抽出一个容量为6的样本,从这6个人中随机抽取3个人,求这3个人都主食蔬菜的概率.
附:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
.