题目内容
【题目】设函数(其中a∈R).
(1)讨论函数f(x)的奇偶性,并说明理由.
(2)若,试判断函数f(x)在区间[1,+∞)上的单调性,并用函数单调性定义给出证明.
【答案】(1)见解析;(2)见解析
【解析】
(1)根据题意,求出函数的定义域,分a=0与a≠0两种情况讨论函数的奇偶性,即可得答案;
(2)根据题意,设1≤x1<x2,由作差法分析可得结论.
(1)函数,其定义域为{x|x≠0},
当a=0时,f(x)=,有f(-x)=-f(x),则函数f(x)为奇函数;
当a≠0时,,f(-x)=ax2-,
有f(x)≠f(-x)且f(-x)≠-f(x),
则函数f(x)是非奇非偶函数;
(2)根据题意,函数f(x)在[1,+∞)上为增函数;
证明:设1≤x1<x2,
则f(x1)-f(x2)=(ax12+)-(ax22+)=(x1-x2)[a(x1+x2)],
又由1≤x1<x2,则(x1-x2)<0,[a(x1+x2)>1,<1,则有f(x1)-f(x2)<0,
则函数f(x)在[1,+∞)上为增函数.
【题目】为了探究某市高中理科生在高考志愿中报考“经济类”专业是否与性别有关,现从该市高三理科生中随机抽取50各学生进行调查,得到如下2×2列联表:(单位:人).
报考“经济类” | 不报“经济类” | 合计 | |
男 | 6 | 24 | 30 |
女 | 14 | 6 | 20 |
合计 | 20 | 30 | 50 |
(Ⅰ)据此样本,能否有99%的把握认为理科生报考“经济类”专业与性别有关?
(Ⅱ)若以样本中各事件的频率作为概率估计全市总体考生的报考情况,现从该市的全体考生(人数众多)中随机抽取3人,设3人中报考“经济类”专业的人数为随机变量X,求随机变量X的概率分布及数学期望.
附:参考数据:
P(X2≥k) | 0.05 | 0.010 |
k | 3.841 | 6.635 |
(参考公式:X2= )
【题目】大家知道,莫言是中国首位获得诺贝尔奖的文学家,国人欢欣鼓舞.某高校文学社从男女生中各抽取50名同学调查对莫言作品的了解程度,结果如下:
阅读过莫言的 | 0~25 | 26~50 | 51~75 | 76~100 | 101~130 |
男生 | 3 | 6 | 11 | 18 | 12 |
女生 | 4 | 8 | 13 | 15 | 10 |
(Ⅰ)试估计该校学生阅读莫言作品超过50篇的概率;
(Ⅱ)对莫言作品阅读超过75篇的则称为“对莫言作品非常了解”,否则为“一般了解”.根据题意完成下表,并判断能否有75%的把握认为对莫言作品的非常了解与性别有关?
非常了解 | 一般了解 | 合计 | |
男生 | |||
女生 | |||
合计 |
附:K2=
P(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |