题目内容

(2013•温州一模)已a,b,c分别是△AB的三个内角A,B,的对边,
2b-c
a
=
cosC
cosA

(Ⅰ)求A的大小;
(Ⅱ)求函数y=
3
sinB+sin(C-
π
6
)
的值域.
分析:(I)由条件利用正弦定理求得cosA=
1
2
,从而求得 A=
π
3

(II) 由A=
π
3
,可得 B+C=
3
. 化简函数y等于 2sin(B+
π
6
),再根据<B+
π
6
的范围求得函数的定义域.
解答:解:(I)△ABC中,∵
2b-c
a
=
cosC
cosA
,由正弦定理,得:
2sinB-sinC
sinA
=
cosC
cosA
,…(2分)
即 2sinBcosA=sinAcosC+sinCcosA,故2sinBcosA=sin(A+C)=sinB,…(4分)
∴cosA=
1
2
,A=
π
3
.   …(6分)
(II)∵A=
π
3
,∴B+C=
3
.   …(8分)
故函数y=
3
sinB+sin(C-
π
6
)
=
3
sinB+sin(
π
2
-B)=
3
sinB+cosB=2sin(B+
π
6
). …(11分)
∵0<B<
3
,∴
π
6
<B+
π
6
6
,∴sin(B+
π
6
)∈(
1
2
,1],…(13分)
故函数的值域为 (1,2]. …(14分)
点评:本题主要考查两角和差的正弦公式、正弦定理、正弦函数的定义域和值域,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网