题目内容
抛物线(>)的焦点为,已知点、为抛物线上的两个动点,且满足.过弦的中点作抛物线准线的垂线,垂足为,则的最大值为 ( )
A. | B.1 | C. | D.2 |
A
解析试题分析:如下图所示,设.
则,,所以
考点:1、抛物线;2、梯形的中位线;3、余弦定理;4、重要不等式.
练习册系列答案
相关题目
椭圆的一个顶点与两个焦点构成等边三角形,则椭圆的离心率( )
A. | B. | C. | D. |
过椭圆的左焦点作互相垂直的两条直线,分别交椭圆于四点,则四边形面积的最小值为( )
A. | B. | C. | D. |
在椭圆中,分别是其左右焦点,若椭圆上存在一点P使得,则该椭圆离心率的取值范围是( )
A. | B. | C. | D. |
已知动点P在曲线上移动,则点与点P连线中点的轨迹方程是( )
A. | B. | C. | D. |
等轴双曲线(a>0,b>0)的右焦点为F(c,0),方程的实根分别为和,则三边长分别为||,||,2的三角形中,长度为2的边的对角是 ( )
A.锐角 | B.直角 | C.钝角 | D.不能确定 |
已知抛物线y2=2px(p>0)与双曲线=1(a>0,b>0)有相同的焦点F,点A是两曲线的一个交点,且AF⊥x轴,则双曲线的离心率为 ( )
A.+2 | B.+1 | C.+1 | D.+1 |