题目内容
【题目】曲线的极坐标方程为(常数),曲线的参数方程为(为参数).
(1)求曲线的直角坐标方程和的普通方程;
(2)若曲线,有两个不同的公共点,求实数的取值范围.
【答案】(1):,:;(2)
【解析】
(1)根据直角坐标与极坐标关系及题目条件得曲线的直角坐标方程,利用消元法消去t可得的普通方程;
(2)若曲线,有两个不同的公共点,法一:方程联立利用根与系数关系,利用判别式解出即可求实数的取值范围;法二:数形结合可得圆心到直线距离小于半径,解出即可求实数的取值范围.
(1)方法一:由得:.
由得:,即.
∴曲线的直角坐标方程为:,的普通方程为:.
方法二:由得:.
由得:;由得:.
∴.
整理得的普通方程为:.
∴曲线的直角坐标方程为:,的普通方程为:.
(2)方法一:由消得:.
由曲线,有两个不同的公共点得:,解得:.
又当圆:过点时,有,且曲线表示不过点的直线.
∴.
∴实数的取值范围为.
方法二:圆心到直线的距离为:.
由曲线,有两个不同的公共点得:,即.
又当圆:过点时,有,且曲线表示不过点的直线.
∴.
∴实数的取值范围为.
【题目】第十三届全国人大常委会第十一次会议审议的《固体废物污染环境防治法(修订草案)》中,提出推行生活垃圾分类制度,这是生活垃圾分类首次被纳入国家立法中.为了解某城市居民的垃圾分类意识与政府相关法规宣传普及的关系,对某试点社区抽取户居民进行调查,得到如下的列联表.
分类意识强 | 分类意识弱 | 合计 | |
试点后 | |||
试点前 | |||
合计 |
已知在抽取的户居民中随机抽取户,抽到分类意识强的概率为.
(1)请将上面的列联表补充完整,并判断是否有的把握认为居民分类意识的强弱与政府宣传普及工作有关?说明你的理由;
(2)已知在试点前分类意识强的户居民中,有户自觉垃圾分类在年以上,现在从试点前分类意识强的户居民中,随机选出户进行自觉垃圾分类年限的调查,记选出自觉垃圾分类年限在年以上的户数为,求分布列及数学期望.
参考公式:,其中.
下面的临界值表仅供参考