题目内容

对n∈N*,不等式所表示的平面区域为Dn,把Dn内的整点(横坐标与纵坐标均为整数的点)按其到原点的距离从近到远排成点列:(x1,y1),(x2,y2),(x3,y3),…,(xn,yn).
(1)求xn,yn
(2)数列{an}满足a1=x1且n≥2时,,求数列{an}的前n项和Sn
(3)设c1=1,当n≥2时,,且数列{cn}的前n项和Tn,求T99
【答案】分析:(1)画出可行域,结合图形写出xn,yn
(2)利用等比数列的前n项和公式求出an;利用错位相减法和等差数列的前n项和公式求出Sn
(3)先化简Cn,再利用裂项相消法求出T99
解答:解:(1)的可行域为
如图示,xn=1,yn=n
(2)由题意可知:a1=1,an=

,则

两式相减得:


故数列{an}的前n项的和为:
(3)当n≥2时,
=
==lg(n+1)-lgn
T99=1+(lg3-lg2)+(lg4-lg3)+(lg5-lg3)++(lg100-lg99)
=1+2-lg2
=3-lg2.
点评:本题考查画不等式组表示的平面区域;数列求和的方法:错位相减法、公式法、裂项相消法.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网