题目内容

【题目】已知函数f(x)=sin(x﹣ )+cos(x﹣ ),g(x)=2sin2
(1)若α是第一象限角,且f(α)= ,求g(α)的值;
(2)求使f(x)≥g(x)成立的x的取值集合.

【答案】
(1)解:∵f(x)= sinx﹣ cosx+ cosx+ sinx= sinx,

所以f(α)= sinα= ,所以sinα=

又α∈(0, ),所以cosα=

所以g(α)=2sin2 =1﹣cosα=


(2)解:由f(x)≥g(x)得 sinx≥1﹣cosx,

所以 sinx+ cosx=sin(x+ )≥

解2kπ+ ≤x+ ≤2kπ+ ,k∈z,求得2kπ≤x≤2kπ+ ,k∈z,

所以x的取值范围为〔2kπ,2kπ+ 〕k∈z.


【解析】(1)利用两角和差的三角公式化简函数f(x)的解析式,可得f(α)的解析式,再根据f(α)= ,求得cosα的值,从而求得g(α)=2sin2 =1﹣cosα的值.(2)由不等式可得 sin(x+ )≥ ,解不等式 2kπ+ ≤x+ ≤2kπ+ ,k∈z,求得x的取值集合.
【考点精析】掌握两角和与差的正弦公式和二倍角的余弦公式是解答本题的根本,需要知道两角和与差的正弦公式:;二倍角的余弦公式:

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网