题目内容

19.如图,AB是⊙O的一条切线,切点为B,ADE,CFD和 CGE都是⊙O的割线,AC=AB
(1)证明:AC2=AD•AE;
(2)证明:FG∥AC.

分析 (1)利用切线长与割线长的关系及AB=AC进行证明.
(2)利用成比例的线段证明角相等、三角形相似,得到同位角角相等,从而两直线平行.

解答 证明:(1)因为AB是ΘO的一条切线,AE为割线
所以AB2=AD•AE,
又因为AB=AC,所以AD•AE=AC2…(5分)
(2)由(1)得$\frac{AD}{AC}=\frac{AC}{AE}$.
∵∠EAC=∠DAC,∴△ADC∽△ACE,
∴∠ADC=∠ACE.
∵∠ADC=∠EGF,
∴∠EGF=∠ACE,
∴GF∥AC…(10分)

点评 本题考查圆的切线、割线长的关系,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网