题目内容
【题目】已知曲线C:(α为参数)和定点A(0,),F1,F2是此曲线的左、右焦点,以原点O为极点,以x轴的正半轴为极轴建立极坐标系.
(1)求直线AF2的极坐标方程;
(2)经过点F1且与直线AF2垂直的直线l交曲线C于M,N两点,求||MF1|-|NF1||的值.
【答案】(1)ρcosθ+ρsinθ=;(2).
【解析】
(1)先将曲线C参数方程化为普通方程,求出F2点坐标,进而求出直线AF2的直角坐标方程,再化为极坐标方程;
(2)根据条件求出具有几何意义的直线l参数方程,代入曲线C的普通方程,运用韦达定理和直线参数的几何意义,即可求解.
(1)曲线C:可化为,
故曲线C为椭圆,则焦点F1(-1,0),F2(1,0).
所以经过点A(0,)和F2(1,0)的直线AF2的方程为
x+=1,即x+y-=0,
所以直线AF2的极坐标方程为ρcosθ+ρsinθ=.
(2)由(1)知,直线AF2的斜率为-,因为l⊥AF2,
所以直线l的斜率为,即倾斜角为30°,
所以直线l的参数方程为(t为参数),
代入椭圆C的方程中,得13t2-t-36=0.
因为点M,N在点F1的两侧,
所以||MF1|-|NF1||=|t1+t2|=.
练习册系列答案
相关题目