题目内容

8、设函数f(x)=ax(a>0,a≠1),如果f(x1+x2+…+x2009)=8,那么f(2x1)×f(2x2)×…×f(2x2009)的值等于(  )
分析:利用f(x)=ax(a>0,a≠1),求出f(x1+x2+…+x2009)=8,整体代入f(2x1)×f(2x2)×…×f(2x2009)的化简的表达式即可.
解答:解:f(x1+x2+…+x2009)=8可得ax1+x2+…+x2009=8
f(2x1)×f(2x2)×…×f(2x2009)=a 2(x1+x2+…+x2009=82=64
故选B.
点评:本题考查求指数函数解析式,函数的值,考查计算能力,是基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网