题目内容

【题目】在直角坐标系中,已知圆C的圆心坐标为(2,0),半径为 ,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.,直线l的参数方程为: (t为参数).
(1)求圆C和直线l的极坐标方程;
(2)点P的极坐标为(1, ),直线l与圆C相交于A,B,求|PA|+|PB|的值.

【答案】
(1)解:圆C的直角坐标方程为(x﹣2)2+y2=2,

代入圆C得:(ρcosθ﹣2)22sin2θ=2

化简得圆C的极坐标方程:ρ2﹣4ρcosθ+2=0

得x+y=1,∴l的极坐标方程为ρcosθ+ρsinθ=1


(2)解:由 得点P的直角坐标为P(0,1),

∴直线l的参数的标准方程可写成

代入圆C得:

化简得:

,∴t1<0,t2<0


【解析】(1) 代入圆C得圆C的极坐标方程;直线l的参数方程转化成普通方程,进而求得直线l的极坐标方程;(2)将直线l的参数方程代入圆的方程,求得关于t的一元二次方程,令A,B对应参数分别为t1 , t2 , 根据韦达定理、直线与圆的位置关系,即可求得|PA|+|PB|的值.

练习册系列答案
相关题目

【题目】四棱锥S-ABCD的底面ABCD为直角梯形,AB∥CD,AB⊥BC,AB=2BC=2CD=2,△SAD为正三角形.

(Ⅰ)点M为棱AB上一点,若BC∥平面SDM,AM=λAB,求实数λ的值;

(Ⅱ)若BC⊥SD,求二面角A-SB-C的余弦值.

【答案】(Ⅰ)(Ⅱ)

【解析】

由线面平行的性质定理可得据此可知四边形BCDM为平行四边形,据此可得.

由几何关系,在平面内过点直线于点以点E为坐标原点,EA方向为X轴,EC方向为Y轴,ES方向为Z轴建立空间坐标系,据此可得平面的一个法向量,平面的一个法向量,据此计算可得二面角余弦值为.

Ⅰ)因为平面SDM, 平面ABCD,平面SDM 平面ABCD=DM,所以

因为,所以四边形BCDM为平行四边形,又,所以MAB的中点.

因为 .

Ⅱ)因为 ,所以平面,又因为平面

所以平面平面,平面平面

在平面内过点直线于点,则平面

中,因为,所以

又由题知,所以所以

以下建系求解.以点E为坐标原点,EA方向为X轴,EC方向为Y轴,ES方向为Z轴建立如图所示空间坐标系,

设平面的法向量,则,所

为平面的一个法向量,

同理得为平面的一个法向量,

,因为二面角为钝角.

所以二面角余弦值为.

【点睛】

本题考查了立体几何中的判断定理和二面角的求解问题,意在考查学生的空间想象能力和逻辑推理能力;解答本题关键在于能利用直线与直线、直线与平面、平面与平面关系的相互转化,通过严密推理,明确角的构成.同时对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解平面的法向量,利用向量的夹角公式求解.

型】解答
束】
19

【题目】小明在石家庄市某物流派送公司找到了一份派送员的工作,该公司给出了两种日薪薪酬方案.甲方案:底薪100元,每派送一单奖励1元;乙方案:底薪140元,每日前55单没有奖励,超过55单的部分每单奖励12元.

(Ⅰ)请分别求出甲、乙两种薪酬方案中日薪y(单位:元)与送货单数n的函数关系式;

(Ⅱ)根据该公司所有派送员100天的派送记录,发现派送员的日平均派送单数满足以下条件:在这100天中的派送量指标满足如图所示的直方图,其中当某天的派送量指标在(]n=1,2,3,4,5)时,日平均派送量为50+2n单.若将频率视为概率,回答下列问题:

①根据以上数据,设每名派送员的日薪为X(单位:元),试分别求出甲、乙两种方案的日薪X的分布列,数学期望及方差;

②结合①中的数据,根据统计学的思想,帮助小明分析,他选择哪种薪酬方案比较合适,并说明你的理由。

(参考数据:0.62=0.36,1.42=1.9 6,2.6 2=6.76,3.42=1 1.56,3.62=12.96,4.62=21.16,15.62=243.36,20.42=416.16,44.42=1971.36)

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网