题目内容
【题目】在直角坐标系中,已知圆C的圆心坐标为(2,0),半径为 ,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.,直线l的参数方程为: (t为参数).
(1)求圆C和直线l的极坐标方程;
(2)点P的极坐标为(1, ),直线l与圆C相交于A,B,求|PA|+|PB|的值.
【答案】
(1)解:圆C的直角坐标方程为(x﹣2)2+y2=2,
代入圆C得:(ρcosθ﹣2)2+ρ2sin2θ=2
化简得圆C的极坐标方程:ρ2﹣4ρcosθ+2=0
由 得x+y=1,∴l的极坐标方程为ρcosθ+ρsinθ=1
(2)解:由 得点P的直角坐标为P(0,1),
∴直线l的参数的标准方程可写成
代入圆C得:
化简得: ,
∴ ,∴t1<0,t2<0
∴
【解析】(1) 代入圆C得圆C的极坐标方程;直线l的参数方程转化成普通方程,进而求得直线l的极坐标方程;(2)将直线l的参数方程代入圆的方程,求得关于t的一元二次方程,令A,B对应参数分别为t1 , t2 , 根据韦达定理、直线与圆的位置关系,即可求得|PA|+|PB|的值.
【题目】某商场销售某种品牌的空调器,每周周初购进一定数量的空调器,商场每销售一台空调器可获利500元,若供大于求,则每台多余的空调器需交保管费100元;若供不应求,则可从其他商店调剂供应,此时每台空调器仅获利润200元.
(Ⅰ)若该商场周初购进20台空调器,求当周的利润(单位:元)关于当周需求量n(单位:台,n∈N)的函数解析式f(n);
(Ⅱ)该商场记录了去年夏天(共10周)空调器需求量n(单位:台),整理得表:
周需求量n | 18 | 19 | 20 | 21 | 22 |
频数 | 1 | 2 | 3 | 3 | 1 |
以10周记录的各需求量的频率作为各需求量发生的概率,若商场周初购进20台空调器,X表示当周的利润(单位:元),求X的分布列及数学期望.