题目内容

【题目】平面上,将两个半圆弧、两条直线围成的封闭图形记为,如图中阴影部分.记轴旋转一周而成的几何体为,过的水平截面,所得截面面积为,试利用祖暅原理(祖暅原理:“幂势既同,则积不容异”,意思是:两等高的几何体在同高处被截得的两个截面面积均相等,那么这两个几何体的体积相等)、一个平放的圆柱和一个长方体,得出的体积值为__________

【答案】

【解析】

由题目给出的的水平截面的面积,可猜想水平放置的圆柱和长方体的量,然后直接求出圆柱的体积与长方体的体积作和即可.

因为几何体的水平截面的截面面积为,该截面的截面面积由两部分组成,一部分为定值,看作是截一个底面积为,高为2的长方体得到的,对于,看作是把一个半径为1,高为的圆柱得到的,如图所示:

这两个几何体和放在一起,根据祖暅原理,每个平行水平面的截面面积相等,故它们体积相等,即的体积为.故填.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网