题目内容
假设关于某设备使用年限x(年)和所支出的维修费用y(万元)有如下统计资料:
2 | 3 | 4 | 5 | 6 | |
2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
若由资料知,y对x呈线性相关关系,试求:
(1)回归直线方程;
(2)估计使用年限为10年时,维修费用约是多少?
(1);(2)维修费约为12.38万元.
解析试题分析:(1)由于 知道y与x呈线性相关关系,就无需进行相关性检验;先由题中所给数据,求出和,并求出它们的和将这些值代入最小二乘法公式算得,再由求得,从而求得回归直线方程;(2)由(1)取,计算出对应的的值,即是估计使用年限为10年时,维修费的估计值,注意回答即可.
试题解析:(1)依题列表如下:1 2 3 4 5 2 3 4 5 6 2.2 3.8 5.5 6.5 7.0 4.4 11.4 22.0 32.5 42.0
, .
回归直线方程为.
(2)当时,万元.
即估计用10年时,维修费约为12.38万元.
考点:线性回归.
练习册系列答案
相关题目
某高校从参加今年自主招生考试的学生中随机抽取容量为50的学生成绩样本,得频率分布表如下:
组号 | 分组 | 频数 | 频率 |
第一组 | 8 | 0.16 | |
第二组 | ① | 0.24 | |
第三组 | 15 | ② | |
第四组 | 10 | 0.20 | |
第五组 | 5 | 0.10 | |
合 计 | 50 | 1.00 |
(1)写出表中①②位置的数据;
(2)为了选拔出更优秀的学生,高校决定在第三、四、五组中用分层抽样法抽取6名学生进行第二轮考核,分别求第三、四、五各组参加考核人数;
(3)在(2)的前提下,高校决定在这6名学生中录取2名学生,求2人中至少有1名是第四组的概率.
“世界睡眠日”定在每年的3月21日,2009年的世界睡眠日主题是“科学管理睡眠”,以提高公众对健康睡眠的自我管理能力和科学认识.为此某网站于2009年3月13日到3月20日持续一周网上调查公众日平均睡眠的时间(单位:小时),共有2000人参加调查,现将数据整理分组后如题中表格所示.
序号 | 分组睡眠时间 | 组中值 | 频数 (人数) | 频率 |
1 | 4.5 | 80 | ( ) | |
2 | 5.5 | 520 | 0.26 | |
3 | 6.5 | 600 | 0.30 | |
4 | 7.5 | ( ) | ( ) | |
5 | 8.5 | 200 | 0.10 | |
6 | 9.5 | 40 | 0.02 |
(1)求出表中空白处的数据,并将表格补充完整;
(2)画出频率分布直方图;
(3)为了对数据举行分析,采用了计算机辅助计算.分析中一部分计算见算法流程图,求输出的值。
某公司销售A、B、C三款手机,每款手机都有经济型和豪华型两种型号,据统计12月份共销售1000部手机(具体销售情况见下表)
| A款手机 | B款手机 | C款手机 |
经济型 | 200 | x | y |
豪华型 | 150 | 160 | z |
已知在销售1000部手机中,经济型B款手机销售的频率是0.21.
(1)现用分层抽样的方法在A、B、C三款手机中抽取50部,求应在C款手机中抽取多少部?
(2)若y136,z133,求C款手机中经济型比豪华型多的概率.
以下是某地搜集到的新房屋的销售价格(万元)和房屋的面积()的数据 ,若由资料可知对呈线性相关关系。
80 | 90 | 100 | 110 | 120 | |
y | 48 | 52 | 63 | 72 | 80 |
试求:(1)线性回归方程;
(2)根据(1)的结果估计当房屋面积为时的销售价格.
参考公式:
某中学一位高三班主任对本班名学生学习积极性和对待班级工作的态度进行长期的调查,得到的统计数据如下表所示:
| 积极参加班级工作 | 不太主动参加班级工作 | 合计 |
学习积极性高 | 18 | 7 | 25 |
学习积极性一般 | 6 | 19 | 25 |
合计 | 24 | 26 | 50 |
(1)如果随机调查这个班的一名学生,那么抽到积极参加班级工作的学生的概率是多少?抽到不太积极参加班级工作且学习积极性一般的学生的概率是多少?
(2)学生的积极性与对待班级工作的态度是否有关系?说明理由.