题目内容
以下是某地搜集到的新房屋的销售价格(万元)和房屋的面积()的数据 ,若由资料可知对呈线性相关关系。
80 | 90 | 100 | 110 | 120 | |
y | 48 | 52 | 63 | 72 | 80 |
试求:(1)线性回归方程;
(2)根据(1)的结果估计当房屋面积为时的销售价格.
参考公式:
(1);(2)当房屋面积为时的销售价格为105万元.
解析试题分析:(1)先由数据表求得:,再根据所给公式求得,进一步由,可得回归直线方程;(2)当房屋面积为时,即代入回归方程可得可能的销售价格.
解:(1)由已知数据表求得:,
将数据代入 计算得:b="0.84,"
又由得:
线性回归方程为:.
(2)当时,求得(万元),
所以当房屋面积为时的销售价格为105万元.
考点:线性回归方程.
练习册系列答案
相关题目
假设关于某设备使用年限x(年)和所支出的维修费用y(万元)有如下统计资料:
2 | 3 | 4 | 5 | 6 | |
2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
若由资料知,y对x呈线性相关关系,试求:
(1)回归直线方程;
(2)估计使用年限为10年时,维修费用约是多少?
某校在高二年级开设了,,三个兴趣小组,为了对兴趣小组活动的开展情况进行调查,用分层抽样方法从,,三个兴趣小组的人员中,抽取若干人组成调查小组,有关数据见下表(单位:人)
兴趣小组 | 小组人数 | 抽取人数 |
12 | ||
36 | 3 | |
48 |
(2)若从,两个兴趣小组所抽取的人中选2人作专题发言,求这2人都来自兴趣小组的概率.
某学校共有教职工900人,分成三个批次进行继续教育培训,在三个批次中男、女教职工人数如下表所示.已知在全体教职工中随机抽取1名,抽到第二批次中女教职工的概率是0.16.
| 第一批次 | 第二批次 | 第三批次 |
女教职工 | 196 | x | y |
男教职工 | 204 | 156 | z |
(1)求x的值;
(2)现用分层抽样的方法在全体教职工中抽取54名做培训效果的调查,问应在第三批次中抽取教职工多少名?
某种产品的广告费支出x与销售额(单位:百万元)之间有如下对应数据:
x | 2 | 4 | 5 | 6 | 8 |
y | 30 | 40 | 50 | 60 | 70 |
(1)请画出上表数据的散点图.
(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程.
(3)经计算,相关指数,你可得到什么结论?
(参考数值:2×30+4×40+5×50+6×60+8×70==1390)