题目内容
设x,y为正数,则(x+2y)(
+
)的最小值是
1 |
x |
2 |
y |
9
9
.分析:把要求的式子化简为1+
+
+4,再利用基本不等式求出它的最小值.
2x |
y |
2y |
x |
解答:解:∵x,y为正数,∴(x+2y)(
+
)=1+
+
+4≥5+2
=9,
当且仅当
=
时等号成立,
故答案为 9.
1 |
x |
2 |
y |
2x |
y |
2y |
x |
|
当且仅当
2x |
y |
2y |
x |
故答案为 9.
点评:本题主要考查基本不等式的应用,注意基本不等式的使用条件,并注意检验等号成立的条件,属于基础题.
练习册系列答案
相关题目
设x,y为正数,则(x+y)(
+
)的最小值为( )
1 |
x |
4 |
y |
A、6 | B、9 | C、12 | D、15 |