ÌâÄ¿ÄÚÈÝ
£¨2010•ÉϺ££©ÔÚƽÃæÉÏ£¬¸ø¶¨·ÇÁãÏòÁ¿
£¬¶ÔÈÎÒâÏòÁ¿
£¬¶¨Òå
=
-
£®
£¨1£©Èô
=£¨2£¬3£©£¬
=£¨-1£¬3£©£¬Çó
£»
£¨2£©Èô
=£¨2£¬1£©£¬Ö¤Ã÷£ºÈôλÖÃÏòÁ¿
µÄÖÕµãÔÚÖ±ÏßAx+By+C=0ÉÏ£¬ÔòλÖÃÏòÁ¿
µÄÖÕµãÒ²ÔÚÒ»ÌõÖ±ÏßÉÏ£»
£¨3£©ÒÑÖª´æÔÚµ¥Î»ÏòÁ¿
£¬µ±Î»ÖÃÏòÁ¿
µÄÖÕµãÔÚÅ×ÎïÏßC£ºx2=yÉÏʱ£¬Î»ÖÃÏòÁ¿
ÖÕµã×ÜÔÚÅ×ÎïÏßC¡ä£ºy2=xÉÏ£¬ÇúÏßCºÍC¡ä¹ØÓÚÖ±Ïßl¶Ô³Æ£¬ÎÊÖ±ÏßlÓëÏòÁ¿
Âú×ãʲô¹Øϵ£¿
b |
a |
a¡ä |
a |
2(
| ||||
|
|
b |
£¨1£©Èô
a |
b |
a¡ä |
£¨2£©Èô
b |
a |
a¡ä |
£¨3£©ÒÑÖª´æÔÚµ¥Î»ÏòÁ¿
b |
a |
a¡ä |
b |
·ÖÎö£º£¨1£©¸ù¾ÝÌâÒ⣬Ëã³ö
•
=7£¬
2=10£¬´úÈë
µÄ±í´ïʽ²¢»¯¼òÕûÀí£¬¼´¿ÉµÃµ½
=£¨
£¬-
£©£»
£¨2£©Éè
=£¨x'£¬y'£©£¬ÖÕµãÔÚÖ±ÏßAx+By+C=0ÉÏ£¬ÓÉÌâÖÐ
µÄ±í´ïʽ½â³ö
=£¨x£¬y£©Âú×ãµÄ¹Øϵʽ£¬´Ó¶øµÃµ½µã
£¨
£¬
£©ÔÚÖ±ÏßAx+By+C=0ÉÏ£¬»¯¼òÕûÀíµÃµ½Ö±Ïߣ¨3A+4B£©x+£¨4A-3B£©y-5C=0£¬ËµÃ÷ÏòÁ¿
µÄÖÕµãÒ²ÔÚÒ»ÌõÖ±ÏßÉÏ£»
£¨3£©£©Éè
=£¨x£¬y£©£¬µ¥Î»ÏòÁ¿
=£¨cos¦È£¬sin¦È£©£¬½â³ö
¹ØÓÚx¡¢yºÍ¦ÈµÄ×ø±êÐÎʽ£¬½áºÏ
µÄÖÕµãÔÚÅ×ÎïÏßx2=yÉÏÇÒ
ÖÕµãÔÚÅ×ÎïÏßy2=xÉÏ£¬½¨Á¢¹ØÓÚx¡¢yºÍ¦ÈµÄ·½³Ì£¬»¯¼òÕûÀíµÃµ½
=¡À£¨
£¬
£©£®ÔÙÓÉÇúÏßCºÍC¡ä¹ØÓÚÖ±Ïßl£ºy=x¶Ô³Æ£¬Ëã³ölµÄ·½ÏòÏòÁ¿
Âú×ã
•
=0£¬´Ó¶øµÃµ½Ö±ÏßlÓëÏòÁ¿
´¹Ö±£®
a |
b |
|b| |
a¡ä |
a¡ä |
17 |
5 |
6 |
5 |
£¨2£©Éè
a |
a¡ä |
a¡ä |
£¨
-3x-4y |
5 |
-4x+3y |
5 |
a¡ä |
£¨3£©£©Éè
a |
b |
a¡ä |
a |
a¡ä |
b |
| ||
2 |
| ||
2 |
d |
d |
b |
b |
½â´ð£º½â£º£¨1£©¡ß
=£¨2£¬3£©£¬
=£¨-1£¬3£©£¬
¡à
•
=7£¬
2=10£¬¿ÉµÃ
=
£¨-1£¬3£©=£¨-
£¬
£©
Òò´Ë
=
-
=£¨2£¬3£©-£¨-
£¬
£©=£¨
£¬-
£©£»
£¨2£©Éè
=£¨x'£¬y'£©£¬ÖÕµãÔÚÖ±ÏßAx+By+C=0ÉÏ
Ëã³ö
•
=2x'+y'£¬
2=5£¬
=
£¨2£¬1£©=£¨
£¬
£©£¬
¡à
=
-
=£¨x'£¬y'£©-£¨
£¬
£©=£¨
£¬
£©
Òò´Ë£¬Èô
=£¨x£¬y£©£¬Âú×ã
£¬µÃµ½
¡ßµã£¨
£¬
£©ÔÚÖ±ÏßAx+By+C=0ÉÏ
¡àA¡Á
+B¡Á
+C=0£¬»¯¼òµÃ£¨3A+4B£©x+£¨4A-3B£©y-5C=0£¬
ÓÉA¡¢B²»È«ÎªÁ㣬¿ÉµÃÒÔÉÏ·½³ÌÊÇÒ»ÌõÖ±Ïߵķ½³Ì
¼´ÏòÁ¿
µÄÖÕµãÒ²ÔÚÒ»ÌõÖ±ÏßÉÏ£»
£¨3£©¡ß
Êǵ¥Î»ÏòÁ¿£¬
¡àÉè
=£¨x£¬y£©£¬
=£¨cos¦È£¬sin¦È£©£¬¿ÉµÃ
•
=xcos¦È+ysin¦È£¬
ËùÒÔ
=
-
=
-2£¨xcos¦È+ysin¦È£©
=£¨-xcos2¦È-ysin2¦È£¬-2xsin2¦È+ycos2¦È£©
¡ß
µÄÖÕµãÔÚÅ×ÎïÏßx2=yÉÏ£¬ÇÒ
ÖÕµãÔÚÅ×ÎïÏßy2=xÉÏ£¬
¡à-xcos2¦È-ysin2¦È=£¨-2xsin2¦È+ycos2¦È£©2£¬
»¯¼òÕûÀí£¬Í¨¹ý±È½ÏϵÊý¿ÉµÃcos¦È=
£¬sin¦È=-
»òcos¦È=-
£¬sin¦È=
¡à
=¡À£¨
£¬
£©£¬
¡ßÇúÏßCºÍC¡ä¹ØÓÚÖ±Ïßl£ºy=x¶Ô³Æ£¬
¡àlµÄ·½ÏòÏòÁ¿
=£¨1£¬1£©£®
¿ÉµÃ
•
=0£¬¼´
¡Í
£¬Òò´ËÖ±ÏßlÓëÏòÁ¿
´¹Ö±£®
a |
b |
¡à
a |
b |
|b| |
2(
| ||||
|
|
b |
2¡Á7 |
10 |
7 |
5 |
21 |
5 |
Òò´Ë
a¡ä |
a |
2(
| ||||
|
|
b |
7 |
5 |
21 |
5 |
17 |
5 |
6 |
5 |
£¨2£©Éè
a |
Ëã³ö
a |
b |
|b| |
2(
| ||||
|
|
b |
2(2x¡ä+y¡ä) |
5 |
8x¡ä+4y¡ä |
5 |
4x¡ä+2y¡ä |
5 |
¡à
a¡ä |
a |
2(
| ||||
|
|
b |
8x¡ä+4y¡ä |
5 |
4x¡ä+2y¡ä |
5 |
-3x¡ä-4y¡ä |
5 |
-4x¡ä+3y¡ä |
5 |
Òò´Ë£¬Èô
a¡ä |
|
|
¡ßµã£¨
-3x-4y |
5 |
-4x+3y |
5 |
¡àA¡Á
-3x-4y |
5 |
-4x+3y |
5 |
ÓÉA¡¢B²»È«ÎªÁ㣬¿ÉµÃÒÔÉÏ·½³ÌÊÇÒ»ÌõÖ±Ïߵķ½³Ì
¼´ÏòÁ¿
a¡ä |
£¨3£©¡ß
b |
¡àÉè
a |
b |
a |
b |
ËùÒÔ
a¡ä |
a |
2(
| ||||
|
|
b |
a |
b |
¡ß
a |
a¡ä |
¡à-xcos2¦È-ysin2¦È=£¨-2xsin2¦È+ycos2¦È£©2£¬
»¯¼òÕûÀí£¬Í¨¹ý±È½ÏϵÊý¿ÉµÃcos¦È=
| ||
2 |
| ||
2 |
| ||
2 |
| ||
2 |
¡à
b |
| ||
2 |
| ||
2 |
¡ßÇúÏßCºÍC¡ä¹ØÓÚÖ±Ïßl£ºy=x¶Ô³Æ£¬
¡àlµÄ·½ÏòÏòÁ¿
d |
¿ÉµÃ
d |
b |
d |
b |
b |
µãÆÀ£º±¾Ìâ¸ø³öÏòÁ¿µÄ¹Øϵʽ£¬ÇóÖ¤µ±ÏòÁ¿
ÖÕµãÔÚÒ»ÌõÖ±ÏßÉÏʱ£¬ÏòÁ¿
µÄÖÕµãÒ²ÔÚÒ»ÌõÖ±ÏßÉϵÈÎÊÌ⣮×ÅÖØ¿¼²éÁËÏòÁ¿µÄÊýÁ¿»ýÔËËã¡¢ÏòÁ¿µÄ×ø±êÔËËãºÍÇúÏßÓë·½³ÌµÄÌÖÂÛµÈ֪ʶ£¬ÊôÓÚÖеµÌ⣮
a |
a¡ä |
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿