题目内容

【题目】如图(1),等腰直角三角形的底边,点在线段上,,现将沿折起到的位置(如图(2))

(1)求证:

(2),直线与平面所成的角为,求长.

【答案】(1)详见解析(2)

【解析】

试题分析:(1)根据翻折后仍然与垂直,结合线面垂直的判定定理可得平面,再由线面垂直的性质可得 (2)分别以所在直线为轴、轴、轴,建立如图所示空间直角坐标系.设,可得点关于的坐标形式,从而得到向量坐标,利用垂直向量数量积为的方法建立方程组,解出平面的一个法向量为

,由与平面所成的角为和向量的坐标,建立关于参数的方程,解之即可得到线段的长.

试题解析: (1) .

平面.

平面.

(2)由(1)知,且,所以两两垂直.分别以的方向为轴、轴、轴的正方向建立空间直角坐标系.

,则,可得

.

设平面的法向量为,则

所以,取

直线与平面所成的角为,且

.

解之得,或(舍去).所以的长为.

练习册系列答案
相关题目

【题目】如图,在四棱锥中,底面是平行四边形, ,侧面底面 分别为 的中点,点在线段上.

(1)求证: 平面

(2)若直线与平面所成的角和直线与平面所成的角相等,求的值.

【答案】(1)证明见解析;(2) .

【解析】试题分析:

在平行四边形中,由条件可得,进而可得。由侧面底面,得底面,故得,所以可证得平面.(Ⅱ)先证明平面平面,由面面平行的性质可得平面.(Ⅲ)建立空间直角坐标系,通过求出平面的法向量,根据线面角的向量公式可得

试题解析:

(Ⅰ)证明:在平行四边形中,

分别为 的中点,

∵侧面底面,且

底面

底面

平面 平面

平面

(Ⅱ)证明:∵的中点, 的中点,

平面 平面

平面

同理平面

平面 平面

∴平面平面

平面

平面

(Ⅲ)解:由底面 ,可得 两两垂直,

建立如图空间直角坐标系

所以

,则

易得平面的法向量

设平面的法向量为,则:

,得

,得

∵直线与平面所成的角和此直线与平面所成的角相等,

,即

解得(舍去),

点睛用向量法确定空间中点的位置的方法

根据题意建立适当的空间直角坐标系,由条件确定有关点的坐标,运用共线向量用参数(参数的范围要事先确定确定出未知点的坐标,根据向量的运算得到平面的法向量或直线的方向向量,根据所给的线面角(或二面角)的大小进行运算,进而求得参数的值,通过与事先确定的参数的范围进行比较,来判断参数的值是否符合题意进而得出点是否存在的结论。

型】解答
束】
21

【题目】如图,椭圆上的点到左焦点的距离最大值是,已知点在椭圆上,其中为椭圆的离心率.

(1)求椭圆的方程;

(2)过原点且斜率为的直线交椭圆于两点,其中在第一象限,它在轴上的射影为点,直线交椭圆于另一点.证明:对任意的,点恒在以线段为直径的圆内.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网