题目内容
已知在数列{an}中,![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183722451330129/SYS201310241837224513301020_ST/0.png)
(1)证明:数列
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183722451330129/SYS201310241837224513301020_ST/1.png)
(2)令bn=(n+1)(1-an),记数列{bn}的前n项和为Tn.
①求证:当n≥2时,
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183722451330129/SYS201310241837224513301020_ST/2.png)
②)求证:当n≥2时,
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183722451330129/SYS201310241837224513301020_ST/3.png)
【答案】分析:(1)由题设知Sn=n2(Sn-Sn-1)-n(n-1),(n2-1)Sn-n2S=n(n-1),两边同除以n(n-1),得
,由此能够证明数列
是等差数列;
(2)由
,
代入Sn=n2an-n(n-1),得
,故
,
.
①
,
,平方
,
再由叠加法能够得到当n≥2时,
;
②当n=2时,
即n=2时命题成立,由数学归纳法能够证明对于任意n≥2,
.
解答:解:(1)由条件可得Sn=n2(Sn-Sn-1)-n(n-1),(n2-1)Sn-n2S=n(n-1)
两边同除以n(n-1),得:![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183722451330129/SYS201310241837224513301020_DA/13.png)
所以:数列
成等差数列,且首项和公差均为(14分)
(2)由(1)可得:
,
,代入Sn=n2an-n(n-1)可得
,所以
,
.(6分)
①
当n≥2时,![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183722451330129/SYS201310241837224513301020_DA/21.png)
平方则![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183722451330129/SYS201310241837224513301020_DA/22.png)
叠加得
∴![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183722451330129/SYS201310241837224513301020_DA/24.png)
又![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183722451330129/SYS201310241837224513301020_DA/25.png)
=
∴
(9分)
②当n=2时,
即n=2时命题成立
假设n=k(k≥2)时命题成立,即![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183722451330129/SYS201310241837224513301020_DA/29.png)
当n=k+1时,![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183722451330129/SYS201310241837224513301020_DA/30.png)
=
即n=k+1时命题也成立
综上,对于任意n≥2,
(14分)
点评:本题考查数列知识的综合运用,解题时要认真审题,注意挖掘题设中的隐含条件.
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183722451330129/SYS201310241837224513301020_DA/0.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183722451330129/SYS201310241837224513301020_DA/1.png)
(2)由
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183722451330129/SYS201310241837224513301020_DA/2.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183722451330129/SYS201310241837224513301020_DA/3.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183722451330129/SYS201310241837224513301020_DA/4.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183722451330129/SYS201310241837224513301020_DA/5.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183722451330129/SYS201310241837224513301020_DA/6.png)
①
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183722451330129/SYS201310241837224513301020_DA/7.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183722451330129/SYS201310241837224513301020_DA/8.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183722451330129/SYS201310241837224513301020_DA/9.png)
再由叠加法能够得到当n≥2时,
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183722451330129/SYS201310241837224513301020_DA/10.png)
②当n=2时,
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183722451330129/SYS201310241837224513301020_DA/11.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183722451330129/SYS201310241837224513301020_DA/12.png)
解答:解:(1)由条件可得Sn=n2(Sn-Sn-1)-n(n-1),(n2-1)Sn-n2S=n(n-1)
两边同除以n(n-1),得:
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183722451330129/SYS201310241837224513301020_DA/13.png)
所以:数列
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183722451330129/SYS201310241837224513301020_DA/14.png)
(2)由(1)可得:
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183722451330129/SYS201310241837224513301020_DA/15.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183722451330129/SYS201310241837224513301020_DA/16.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183722451330129/SYS201310241837224513301020_DA/17.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183722451330129/SYS201310241837224513301020_DA/18.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183722451330129/SYS201310241837224513301020_DA/19.png)
①
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183722451330129/SYS201310241837224513301020_DA/20.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183722451330129/SYS201310241837224513301020_DA/21.png)
平方则
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183722451330129/SYS201310241837224513301020_DA/22.png)
叠加得
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183722451330129/SYS201310241837224513301020_DA/23.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183722451330129/SYS201310241837224513301020_DA/24.png)
又
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183722451330129/SYS201310241837224513301020_DA/25.png)
=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183722451330129/SYS201310241837224513301020_DA/26.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183722451330129/SYS201310241837224513301020_DA/27.png)
②当n=2时,
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183722451330129/SYS201310241837224513301020_DA/28.png)
假设n=k(k≥2)时命题成立,即
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183722451330129/SYS201310241837224513301020_DA/29.png)
当n=k+1时,
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183722451330129/SYS201310241837224513301020_DA/30.png)
=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183722451330129/SYS201310241837224513301020_DA/31.png)
综上,对于任意n≥2,
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183722451330129/SYS201310241837224513301020_DA/32.png)
点评:本题考查数列知识的综合运用,解题时要认真审题,注意挖掘题设中的隐含条件.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目