题目内容

(2011•河北区一模)已知在数列{an}中,Sn是前n项和,满足Sn+an=n,(n=1,2,3,…).
(Ⅰ)求a1,a2,a3的值;
(Ⅱ)求数列{an}的通项公式;
(Ⅲ)令bn=(2-n)(an-1)(n=1,2,3,…),求数列{bn}的前n项和Tn
分析:(Ⅰ)由Sn+an=n,即可求得a1,a2,a3的值;
(Ⅱ)由Sn+an=n,Sn+1+an+1=n+1,二者作差(后者减去前者)可得2an+1-an=1,整理可得an+1-1=
1
2
(an-1),从而可知数列{an-1}是以-
1
2
为首项,以
1
2
为公比的等比数列,于是可求数列{an}的通项公式;
(Ⅲ)由(Ⅱ)与已知可求得bn=
n-2
2n
,利用错位相减法即可求得其n项和Tn
解答:解:(Ⅰ)∵Sn+an=n,
∴a1=
1
2
,a2=
3
4
,a3=
7
8
.…(3分)
(Ⅱ)∵a1+a2+a3+…+an-1+an=n-an,…①
a1+a2+a3+…+an+an+1=n+1-an+1,…②
②-①得2an+1-an=1,
即an+1-1=
1
2
(an-1).…(5分)
又a1-1=-
1
2

∴数列{an-1}是以-
1
2
为首项,以
1
2
为公比的等比数列.…(7分)
∴an-1=(-
1
2
(
1
2
)
n-1
=-(
1
2
)
n

可得an=1-(
1
2
)
n
.…(8分)
(Ⅲ)由(Ⅱ)知,an=1-(
1
2
)
n

∵bn=(2-n)(an-1)=(2-n)[-(
1
2
)
n
]=
n-2
2n
,…(10分)
所以数列{bn}的前n项和Tn=
-1
2
+
0
22
+
1
23
+…+
n-2
2n
.…①
所以
1
2
Tn=
-1
22
+
0
23
+
1
24
+…+
n-2
2n+1
.…②…(12分)
①-②得
1
2
Tn=
-1
2
+
1
22
+
1
23
+…+
1
2n
-
n-2
2n+1
=-
n
2n+1

所以Tn=-
n
2n
.…(14分)
点评:本题考查数列的求和,考查等比数列的判断及其通项公式的应用,突出错位相减法在求和中的应用,属于难题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网