题目内容
现有A,B两球队进行友谊比赛,设A队在每局比赛中获胜的概率都是.
(Ⅰ)若比赛6局,求A队至多获胜4局的概率;
(Ⅱ)若采用“五局三胜”制,求比赛局数ξ的分布列和数学期望.
(Ⅰ);(Ⅱ)E(ξ)=.
解析试题分析:(Ⅰ)利用“正难则反”的思路来求;(Ⅱ)按照分布列的取值情况求对应的概率即可.
试题解析:(Ⅰ) 记“比赛6局,A队至多获胜4局”为事件A,
则P(A)=1-[()5(1-)+()6]=1-=.
故A队至多获胜4局的概率为. 4分
(Ⅱ)由题意可知,ξ的可能取值为3,4,5.
P(ξ=3)=()3+()3==,
P(ξ=4)=()2××+()2××=,
P(ξ=5)=()2()2=.
∴ξ的分布列为:
∴E(ξ)=3×+4×+5×=. 12分ξ 3 4 5 P
考点:排列组合,分布列,期望.
练习册系列答案
相关题目
有一种密码,明文是由三个字符组成,密码是由明文对应的五个数字组成,编码规则如下表:明文由表中每一排取一个字符组成且第一排取的字符放在第一位,第二排取的字符放在第二位,第三排取的字符放在第三位,对应的密码由明文对应的数字按相同的次序排列组成.
第一排 | 明文字符 | A | B | C | D |
密码字符 | 11 | 12 | 13 | 14 | |
第二排 | 明文字符 | E | F | G | H |
密码字符 | 21 | 22 | 23 | 24 | |
第三排 | 明文字符 | M | N | P | Q |
密码字符 | 1 | 2 | 3 | 4 |
(1)求;
(2)求随机变量的分布列和数学期望.
为了对某课题进行研究,用分层抽样方法从三所科研单位A、B、C的相关人员中,抽取若干人组成研究小组,有关数据见下表(单位:人):
科研单位 | 相关人数 | 抽取人数 |
A | 16 | |
B | 12 | 3 |
C | 8 |
(2)若从科研单位A、C抽取的人中选2人作专题发言,求这2人都来自科研单位A的概率.