题目内容
(2013•大连一模)已知各项均为正数的数列{an}满足a1=1,an+1+an•an+1-an=0.
(Ⅰ)求证:数列{
}是等差数列,并求数列{an}的通项公式;
(Ⅱ)求数列{
}前n项和Sn.
(Ⅰ)求证:数列{
| 1 |
| an |
(Ⅱ)求数列{
| 2n |
| an |
分析:(I)由于各项均为正数的数列{an}满足a1=1,an+1+an•an+1-an=0,两边同除以anan+1,即可得到
-
=1,转化为等差数列,利用通项公式即可得出;
(II)由(Ⅰ)知
=n•2n.利用“错位相减法”和等比数列的前n项和公式即可得出.
| 1 |
| an+1 |
| 1 |
| an |
(II)由(Ⅰ)知
| 2n |
| an |
解答:解:(Ⅰ)∵an+1+an•an+1-an=0,∴
=0,
∴
-
=1,
=1,
∴数列{
}是以1为首项,1为公差的等差数列.
=1+(n-1)×1=n,可得an=
.
(Ⅱ)由(Ⅰ)知
=n•2n.
Sn=1×21+2×22+…+n×2n.①
2Sn=1×22+2×23+…+n×2n+1.②
由①-②得-Sn=21+22+…+2n-n×2n+1.
∴Sn=(n-1)2n+1+2.
| an+1+an•an+1-an |
| an•an+1 |
∴
| 1 |
| an+1 |
| 1 |
| an |
| 1 |
| a1 |
∴数列{
| 1 |
| an |
| 1 |
| an |
| 1 |
| n |
(Ⅱ)由(Ⅰ)知
| 2n |
| an |
Sn=1×21+2×22+…+n×2n.①
2Sn=1×22+2×23+…+n×2n+1.②
由①-②得-Sn=21+22+…+2n-n×2n+1.
∴Sn=(n-1)2n+1+2.
点评:熟练掌握等差数列的通项公式、“错位相减法”和等比数列的前n项和公式是解题的关键.
练习册系列答案
相关题目