题目内容
4.已知数列{an}满足a1=a,a2=b,an+2=an+1-an(n∈N*),Sn是{an}的前n项的和,则a2004+S2004=( )A. | a+b | B. | a-b | C. | -a+b | D. | -a-b |
分析 通过求出前几项找出规律:数列{an}是以6为周期的周期数列,进而可得结论.
解答 解:∵a1=a,a2=b,an+2=an+1-an,
∴a3=b-a,
a4=(b-a)-b=-a,
a5=-a-(b-a)=-b,
a6=-b-(-a)=a-b,
a7=a-b-(-b)=a,
a8=a-(a-b)=b,
∴数列{an}是以6为周期的周期数列,
且a1+a2+a3+a4+a5+a6=a+b+(b-a)+(-a)+(-b)+(a-b)=0,
∵2004=334×6,
∴S2004=336×0=0,a2004=a6=a-b,
∴a2004+S2004=0+a-b=a-b,
故选:B.
点评 本题考查数列的周期,注意解题方法的积累,属于中档题.
练习册系列答案
相关题目
14.根据下面给出的数塔猜测123456×9+8=( )
1×9+2=11
12×9+3=111
123×9+4=1111
1234×9+5=11111.
1×9+2=11
12×9+3=111
123×9+4=1111
1234×9+5=11111.
A. | 1111110 | B. | 1111111 | C. | 1111112 | D. | 1111113 |
15.下列区间是函数y=2|cosx|的单调递减区间的是( )
A. | (0,π) | B. | (-$\frac{π}{2}$,0) | C. | ($\frac{3π}{2}$,2π) | D. | (-π,-$\frac{π}{2}$) |
12.已知等差数列中,a4=1,a7+a9=16,则a12的值是( )
A. | 15 | B. | 30 | C. | 31 | D. | 64 |
19.函数f(x)=mx3-x+1在(-∞,+∞) 上是减函数的一个充分不必要条件是( )
A. | m<0 | B. | m≤0 | C. | m≤1 | D. | m<1 |
14.设函数f(x)=$\frac{1}{x+1}$,点A0表示坐标原点,点An(n,f(n))(n∈N*),若向量an=$\overrightarrow{{A}_{0}{A}_{1}}$+$\overrightarrow{{A}_{1}{A}_{2}}$+…+$\overrightarrow{{A}_{n-1}{A}_{n}}$,θn是an与i的夹角(其中i=(1,0)).则tanθ1+tanθ2+tanθ3等于( )
A. | $\frac{1}{2}$ | B. | $\frac{2}{3}$ | C. | $\frac{3}{4}$ | D. | $\frac{4}{5}$ |